
Homework 7: Linear Regression

Due Friday, March 26rd, 2021 at 11:59 pm ET

This homework covers several regression topics, and will give you practice with the numpy and sklearn

libraries in Python. It has both a coding and a writeup component.

Goals

In this homework you will:

1. Build linear regression models to serve as predictors from input data

2. Parse input data into feature matrices and target variables

3. Use cross validation to find the best regularization parameter for a dataset

Background

Before attempting the homework, please review the notes on linear regression. In addition to what is covered there, the following background may be useful:

CSV Processing in Python

Like .txt , .csv (comma-separated values) is a useful file format for storing data. In a CSV file, each line is a data record, and different fields of the record are
separated by commas, making them two-dimensional data tables (i.e., records by fields). Typically, the first row and first column are headings for the fields and
records.

Python's pandas module helps manage two-dimensional data tables. We can read a CSV as follows:

import pandas as pd

data = pd.read_csv('data.csv')

To see a small snippet of the data, including the headers, we can write data.head() . Once we know which columns we want to use as features (say 'A', 'B', 'D') and
which to use as a target variable (say 'C'), we can build our feature matrix and target vector by referencing the header:

X = data[['A', 'B', 'D']]

y = data[['C']]

More details on Pandas can be found here: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

Matrix Algebra in Python

Python offers computationally efficient functions for linear algebra operations through the numpy library. Suppose A is a list of m lists, each having n numerical items.
Numpy will treat A as an m × n matrix. If we want to transpose A, we can write:

import numpy as np

AT = A.T

if B is another m × n matrix, we can perform the matrix operation ATB by writing:

AB = A.T @ B

Note that if n = 1, i.e., A and B are both vectors with m elements, this operation takes the dot product between the vectors.

If A is a square n × n matrix, we can find its inverse (if it exists) with the following:

Ainv = np.linalg.inv(A)

Other useful matrix operations can be found here: https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Linear Regression in Python

Python offers several standard machine learning models with optimized implementations in the sklearn library. Suppose we have a feature matrix X and a target
variable vector y. To train a standard linear regression model, we can write:

from sklearn.linear_model import LinearRegression

model_lin = linear_model.LinearRegression(fit_intercept = True)

model_lin.fit(X, y)

Then, if we have a feature matrix Xn of new samples, we can predict the target variables (if we know the model is performing well) by applying the trained model:

yn = model_lin.predict(Xn)

And we can view the parameters of the model by writing:

model_lin.get_params()

There are also a few different versions of regularized linear regression models in sklearn. One of the most common is ridge regression, which has a single
regularization parameter λ. To train with λ = 0.2, for instance, we can write:

from sklearn.linear_model import Ridge

model_ridge = linear_model.Ridge(alpha = 0.2, fit_intercept = True)

model_ridge.fit(X, y)

More regression models in Python can be found here: https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Instructions

Setting up your repository

Click the link on Piazza to set up your repository for Homework 8, then clone it. Aside from this readme, the repository should contain the following files:

1. plotfit.py , a starter file with functions, instructions, and a skeleton that you will fill out in Problem 1.

2. poly.txt , a data file for Problem 1 where each row is a datapoint in the format: x y, with x being the explanatory and y being the target variable.

3. regularize-cv.py , a starter file with functions, instructions, and a skeleton that you will fill out in Problem 2.

4. diamonds.csv , a data file for Problem 2 where each row has 10 attributes corresponding to a diamond.

Problem 1: Polynomial regression

A common misconception is that linear regression can only be used to fit a linear relationship. We can fit more complicated functions of the explanatory variables by
defining new features that are functions of the existing features. A common class of models is the polynomial, with a d-th degree polynomial being of the form

with the d + 1 parameters β = (a_d, ..., a_1, b)^T . So d = 1 corresponds to a line, d = 2 to a quadratic, d = 3 to a cubic, and so forth.

In this problem, you will build a series of functions that fit polynomials of different degrees to a dataset. You will then use this to determine the best fit to a dataset by
comparing the models from different degrees visually against a scatterplot of the data, and make a prediction for an unseen sample. More specifically:

1. Complete the functions in polyfit.py , which accepts as input a dataset to be fit and polynomial degrees to be tried, and outputs a list of fitted models. The
specifications for the main , feature matrix , and least_squares functions are contained as comments in the skeleton code. The key steps are parsing
the input data, creating the feature matrix, and solving the least squares equations.

2. Use your completed polyfit.py to find fitted polynomial coefficients for d = 1,2,3,4,5 on the poly.txt dataset. Write out the resulting estimated

functions for each d.

3. Use the scatter and plot functions in the matplotlib.pyplot module to visualize the dataset and these fitted models on a single graph (i.e., for each x,

plot). Be sure to vary colors and include a legend so that each curve can be distinguished. What degree polynomial does the
relationship seem to follow? Explain.

4. If we measured a new datapoint x = 2, what would be the predicted value of y (based on the polynomial identified as the best fit in Question 3)?

Note that in this problem, you are not permitted to use the sklearn library. You must use matrix operations in numpy to solve the least squares equations.

Once you have completed polyfit.py , if you run the test case provided, it should output:

[array([-1.15834068, 22.60822925, 100.79905593]), array([-1.43365571e-02, 1.66770942e+00, -9.05694362e-01, 3.39499592e-01, 9.97620446e+01])]

Problem 2: Regularized regression

Regularization techniques like ridge regression introduce an extra model parameter, namely, the regularization parameter λ. To determine the best value of λ for a
given dataset, we often employ cross validation, where we compare the error of the trained model with different values of λ on a test set, and choose the one yielding
lowest error.

In this problem, you will complete the starter code in regularize-cv.py that employs cross validation in selecting the best combination of model parameters β and
regularization parameter λ for a predictor on a given dataset. We use the diamonds.csv dataset (http://vincentarelbundock.github.io/Rdatasets/datasets.html) here,
which contains the prices and nine descriptive attributes (carats, cut, color, clarity, depth, table, x, y, z) of roughly 54,000 diamonds. From the input data, you will train a
ridge regression model on these nine attributes for different values of λ, find the best, and use the result to predict the price of a new diamond given a set of input
features describing it. More specifically:

1. Complete the function normalize_train that takes the training set X_train as input and returns a normalized feature matrix along with arrays of the
means and standard deviations for each column. (The means and standard deviations for each column are needed for properly normalizing the testing data.)
The nine columns of this matrix, X = [x_1 x_2 ... x_9] , must each be normalized to have a mean of 0 and a standard deviation of 1. Recall that this can
be accomplished, for each column, by calculating the column's mean and standard deviation and then subtracting that mean from each element in the column
and dividing the result by the column's standard deviation.

2. Complete the function normalize_test that takes the testing set X_test and the training set means and standard deviations and returns a normalized
feature matrix. Each column should subtract the mean of the corresponding column from X_train and divide by the standard deviation of the corresponding
column from X_train . For example, each element in the first column of X_test should subtract the mean of the first column of X_train and divide by the
standard deviation of the first column of X_train .

3. Define the range of λ to test in main as [10E−1.00, 10E−0.94, 10E−0.88, ..., 10E1.88, 10E1.94, 10E2.00] . This type of logarithmic scale is
common for regularization. You should use the numpy function. np.logspace to define this array (Hint: Use 51 points as num). See the documentation on
np.logspace here: https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html.

4. Complete the function train_model to fit a ridge regression model with regularization parameter λ = l on a training dataset X_train , y_train . You may
use the linear_model.Ridge class in sklearn to do this. Note that the partition of the training and testing set has already been done for you in the main
function.

5. Complete the function error to calculate the mean squared error of the model on a testing dataset X_test , y_test .

6. Complete the code in main for plotting the mean squared error as a function of λ, and for finding the model and mse corresponding to the best
lmbda ('lambda' is a reserved keyword in Python, therefore we need to name it in a different way). Be sure to include a title and axes labels with your plot.

7. Using the coefficients (and intercept) β = (a_1, a_2, ..., a_9, b)^T from the returned model_best , write out the equation

 of your fitted model for a sample x. What is the predicted price for a 0.25 carat, 3 cut, 3 color, 5 clarity,
60 depth, 55 table, 4 x, 3 y, 2 z diamond?

Once you have completed regularizecv.py , if you set lmbda = [1, 100] , your output message should be:

Best lambda tested is 1, which yields an MSE of 1812351.1908771885

What to Submit

For each problem, you must submit (i) your completed version of the starter code, and (ii) a writeup as a separate PDF document named problem1_writeup.pdf
and problem2_writeup.pdf respectively.

Submitting your Code

Push your completed polyfit.py , problem1_writeup.pdf , regularize-cv.py , and problem2_writeup.pdf to your repository before the deadline.

	Homework 7: Linear Regression
	Due Friday, March 26rd, 2021 at 11:59 pm ET
	Goals
	Background
	CSV Processing in Python
	Matrix Algebra in Python
	Linear Regression in Python

	Instructions
	Setting up your repository
	Problem 1: Polynomial regression
	Problem 2: Regularized regression

	What to Submit
	Submitting your Code

