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version control



command line and bash
• Command Line Interface (CLI) for 

interacting with your operating 
system (OS)


• Unix shell: Available by default on 
Linux and macOS


• Windows users: https://
www.howtogeek.com/249966/
how-to-install-and-use-the-linux-
bash-shell-on-windows-10/

• Bash script: Sequence of commands, 
typically saved as .sh file

3

https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/


overview of version control
• Automatically keep old versions of code and/or documentation


• Can revert back to old versions


• Can see differences (“diffs”) between versions


• Typically through maintenance of repository on a server


• Can sync up code between different machines


• Can share code updates across many people


• “git”: One of the most popular version control systems


• Each “project” goes into a different “repository”


• Repositories can be public (e.g., homework assignments) or 
private (e.g., homework solutions prior to the due date :D)


• We will use GitHub to manage assignments in this course
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git illustration
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git illustration
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git walkthrough



python basics



coding in python
• Standard Integrated Development Environments (IDEs)


• IDLE: Python’s own, basic IDE


• PyCharm: Code completion, unit tests, integration with 
git, many advanced development features (https://
www.jetbrains.com/pycharm/)


• Many more!


• Jupyter Notebook (https://jupyter.org/)


• Contains both computer code and rich text elements 
(paragraphs, figures, …)


• Supports several dozen programming languages


• Very useful for data science development!


• You can download the notebook app or use Jupyter 
Hub available on RCAC (https://www.rcac.purdue.edu/
compute/scholar)
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notebook for python basics 



basic variables
• No “declaration” command as in other programming languages


• Variable is created when a value is assigned to it


• Can change type after they have been set


• Few rules on naming: Can make them very descriptive!


• Must start with a letter or underscore


• Case-sensitive (purdue & Purdue are different)


• Combinations (+) work on all types


“xyz	”	+	“abc”	=	“xyz	abc”


3.2	+	1	=	4.2
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operators and control statements
• Comparison operators:


a	==	b,	a	!=	b,	a	<	b,


a	<=	b,	a	>	b,	a	>=	b


• If statement:

if	r	<	3:

		print("x")


• If, elif, else (multiline blocks):

if	b	>	a:

		print("b	is	greater	than	a")

elif	a	==	b:

		print("a	and	b	are	equal")

else:

		print("a	is	greater	than	b”)
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• Arithmetic operators:

a	+	b,	a	-	b,	a	*	b,


a	/	b,	a	%	b,	a	**	b


• Assignment operators:

a	=	b,	a	+=	b,	a	-=	b,


a	*=	b,	a	/=	b,	a	**=	b


• Logical operators:

(a	and	b),	(a	or	b),


not(a),	not(a	or	b)



lists
• One of the four collection data types


• Also tuples, sets, and dictionaries


• Lists are ordered, changeable, and 
allow duplicate members

thislist	=	
["apple",	"banana",	“apple”,	
“cherry”]


• Access/change/add values of items by 
using index

thislist[0]	=	“apple"

thislist[-1]	=	“cherry”

thislist[1:3]	=	[“banana”,	“apple”]
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• Length using len() method

print(len(thislist))


• Adding items to a list

thislist.append(“orange”)

thislist.insert(1,	“orange”)


• Removing items from a list

thislist.remove(“banana”)

thislist.pop(1)


• Defining lists with shorthand

new_list	=	5	*	[0]


new_list	=	range(5)



loops (more control statements)
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• while loop: Execute while 
condition is true

i	=	1

while	i	<	6:

		print(i)

		i	+=	1


• for loop: Iterate over a sequence

for	x	in	"banana":

		print(x)


• range() operator can be a 
useful loop iterator:

for	x	in	range(5,10):

y	=	x	%	2

print(y)


• break: Stop a loop where it is 
and exit


• continue: Move to next 
iteration of loop

for	val	in	“sammy_the_dog”:


if	val	==	“h":

			break

print(val)



lists in for loops
• In other programming languages, for 

loop variables are integers


• In Python, can use any ‘iterable’ object

fruits	=	["apple",	"banana",	"cherry"]

for	x	in	fruits:

		if	x	==	"banana":

				continue

		print(x)


• Nested loops can be used too

adj	=	["red",	"big",	"tasty"]

fruits	=	["apple",	"banana",	"cherry"]

for	x	in	adj:

		for	y	in	fruits:

				print(x,	y)
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• Can also iterate through a list of lists

data_list	=	[[1,2],[2,6],[5,7]]

for	point	in	data_list:


[x,y]	=	point

z	=	x	**	2

print(x,y,z)


• Can use the range function to iterate 
through integers

for	x	in	range(2,	30,	3):

		print(x)


• Can use a list to index another list

ind	=	[1,	3,	5,	7]

values	=	[0]	*	8

for	i	in	ind:

		values[i]	=	i	/	2



functions
• Block of code which runs when 

called


• Defined using def keyword

def	my_function():

		print("Hello	from	a	function”)


• Call a function using its name

my_function()


• Parameters can be passed as 
input to functions

def	my_function(country):

		print("I	am	from	"	+	country)
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• To return a value, use the return 
statement

def	my_function(x):

		return	5	*	x


print(my_function(3))

print(my_function(5))


• For multiple arguments, can use 
keywords to specify order

def	arithmetic(x,y,z):

		return	(x+y)/z


print(arithmetic(z=3,x=2,y=4))
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tuples
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• Another of the four collection 
data types


• Tuples are ordered, unchangeable, 
and allow duplicate members

thistuple	=	
(“apple",	"banana",	“apple”,	
“cherry”)


• Indexed the same way as lists

thistuple[0]	=>	“apple"

thistuple[-1]	=>	“cherry”

thistuple[1:3]	=>	(“banana”,	
“apple”)

• Once a tuple is created, items cannot be 
added or changed


• Workaround: Change to list, back to tuple


• Check if item exists

if	"apple"	in	thistuple:

		print("Yes,	'apple'	is	in	the	fruits	
tuple")


• Tuple with one item needs comma

thistuple	=	(“apple",)	#Tuple

thistuple	=	(“apple")	#Not	a	tuple


• Built in functions

thistuple.count(“apple")

thistuple.index(“apple")



sets
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• Collection which is unordered, (half) 
changeable, and does not allow 
duplicates


• Written with curly brackets

thisset	=	{“apple”,	"banana",	
“cherry”}


• Cannot access items by index, but 
can loop through and check for items
for	x	in	thisset:

		print(x)


print("banana"	in	thisset)

• Cannot change existing items, but can 
add and remove items

thisset.add(“orange")

thisset.update(["orange",	"mango",	“gra
pes"])

thisset.remove("banana")


• Also have set operations just like 
mathematical objects

set1	=	{"a",	"b",	"c"}

set2	=	{1,	"b",	3}


set1.union(set2)		#Union

set1.intersection(set2)		#Intersection

set1.difference(set2)		#set1	\	set2

set1.issubset(set2)		#Testing	if	subset



dictionaries
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• Collection which is unordered, 
changeable, and indexed


• Also written with curly brackets, but 
have keys and values

thisdict	=	{

		"brand":	"Ford",

		"model":	"Mustang",

		"year":	1964

}


• Access/change/add values of items by 
referring to the key name

thisdict[“model"]

thisdict[“year"]	=	2019

thisdict[“color”]	=	"red"

• Can iterate through the keys, values, or both

for	x	in	thisdict:

		print(thisdict[x])


for	x	in	thisdict.values():

		print(x)


for	x,	y	in	thisdict.items():

		print(x,	y)


• Like other collections, can create a dictionary of 
dictionaries


child1	=	{"name"	:	“Emil",	"year"	:	2004}

child2	=	{"name"	:	“Tobias",	"year"	:	2007}

child3	=	{"name"	:	“Linus",	"year"	:	2011}


myfamily	=	{“child1"	:	child1,	"child2"	:	child2,	
"child3"	:	child3}


• Use the copy method (not direct assignment) to 
make a copy of a dictionary


mydict	=	thisdict.copy()


