
ECE 20875

Python for Data Science

David Inouye and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye)

version control

command line and bash
• Command Line Interface (CLI) for

interacting with your operating
system (OS)

• Unix shell: Available by default on
Linux and macOS

• Windows users: https://
www.howtogeek.com/249966/
how-to-install-and-use-the-linux-
bash-shell-on-windows-10/

• Bash script: Sequence of commands,
typically saved as .sh file

3

https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/

overview of version control
• Automatically keep old versions of code and/or documentation

• Can revert back to old versions

• Can see differences (“diffs”) between versions

• Typically through maintenance of repository on a server

• Can sync up code between different machines

• Can share code updates across many people

• “git”: One of the most popular version control systems

• Each “project” goes into a different “repository”

• Repositories can be public (e.g., homework assignments) or
private (e.g., homework solutions prior to the due date :D)

• We will use GitHub to manage assignments in this course
4

add

commit

pull

push

local server

git illustration

5

git illustration

6

git walkthrough

python basics

coding in python
• Standard Integrated Development Environments (IDEs)

• IDLE: Python’s own, basic IDE

• PyCharm: Code completion, unit tests, integration with
git, many advanced development features (https://
www.jetbrains.com/pycharm/)

• Many more!

• Jupyter Notebook (https://jupyter.org/)

• Contains both computer code and rich text elements
(paragraphs, figures, …)

• Supports several dozen programming languages

• Very useful for data science development!

• You can download the notebook app or use Jupyter
Hub available on RCAC (https://www.rcac.purdue.edu/
compute/scholar)

9

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://www.rcac.purdue.edu/compute/scholar
https://www.rcac.purdue.edu/compute/scholar

notebook for python basics

basic variables
• No “declaration” command as in other programming languages

• Variable is created when a value is assigned to it

• Can change type after they have been set

• Few rules on naming: Can make them very descriptive!

• Must start with a letter or underscore

• Case-sensitive (purdue & Purdue are different)

• Combinations (+) work on all types

“xyz	”	+	“abc”	=	“xyz	abc”

3.2	+	1	=	4.2

11

operators and control statements
• Comparison operators:

a	==	b,	a	!=	b,	a	<	b,

a	<=	b,	a	>	b,	a	>=	b

• If statement:

if	r	<	3:

		print("x")

• If, elif, else (multiline blocks):

if	b	>	a:

		print("b	is	greater	than	a")

elif	a	==	b:

		print("a	and	b	are	equal")

else:

		print("a	is	greater	than	b”)

12

• Arithmetic operators:

a	+	b,	a	-	b,	a	*	b,

a	/	b,	a	%	b,	a	**	b

• Assignment operators:

a	=	b,	a	+=	b,	a	-=	b,

a	*=	b,	a	/=	b,	a	**=	b

• Logical operators:

(a	and	b),	(a	or	b),

not(a),	not(a	or	b)

lists
• One of the four collection data types

• Also tuples, sets, and dictionaries

• Lists are ordered, changeable, and
allow duplicate members

thislist	=	
["apple",	"banana",	“apple”,	
“cherry”]

• Access/change/add values of items by
using index

thislist[0]	=	“apple"

thislist[-1]	=	“cherry”

thislist[1:3]	=	[“banana”,	“apple”]

13

• Length using len() method

print(len(thislist))

• Adding items to a list

thislist.append(“orange”)

thislist.insert(1,	“orange”)

• Removing items from a list

thislist.remove(“banana”)

thislist.pop(1)

• Defining lists with shorthand

new_list	=	5	*	[0]

new_list	=	range(5)

loops (more control statements)

14

• while loop: Execute while
condition is true

i	=	1

while	i	<	6:

		print(i)

		i	+=	1

• for loop: Iterate over a sequence

for	x	in	"banana":

		print(x)

• range() operator can be a
useful loop iterator:

for	x	in	range(5,10):

y	=	x	%	2

print(y)

• break: Stop a loop where it is
and exit

• continue: Move to next
iteration of loop

for	val	in	“sammy_the_dog”:

if	val	==	“h":

			break

print(val)

lists in for loops
• In other programming languages, for

loop variables are integers

• In Python, can use any ‘iterable’ object

fruits	=	["apple",	"banana",	"cherry"]

for	x	in	fruits:

		if	x	==	"banana":

				continue

		print(x)

• Nested loops can be used too

adj	=	["red",	"big",	"tasty"]

fruits	=	["apple",	"banana",	"cherry"]

for	x	in	adj:

		for	y	in	fruits:

				print(x,	y)

15

• Can also iterate through a list of lists

data_list	=	[[1,2],[2,6],[5,7]]

for	point	in	data_list:

[x,y]	=	point

z	=	x	**	2

print(x,y,z)

• Can use the range function to iterate
through integers

for	x	in	range(2,	30,	3):

		print(x)

• Can use a list to index another list

ind	=	[1,	3,	5,	7]

values	=	[0]	*	8

for	i	in	ind:

		values[i]	=	i	/	2

functions
• Block of code which runs when

called

• Defined using def keyword

def	my_function():

		print("Hello	from	a	function”)

• Call a function using its name

my_function()

• Parameters can be passed as
input to functions

def	my_function(country):

		print("I	am	from	"	+	country)

16

• To return a value, use the return
statement

def	my_function(x):

		return	5	*	x

print(my_function(3))

print(my_function(5))

• For multiple arguments, can use
keywords to specify order

def	arithmetic(x,y,z):

		return	(x+y)/z

print(arithmetic(z=3,x=2,y=4))

notebook for types

tuples

18

• Another of the four collection
data types

• Tuples are ordered, unchangeable,
and allow duplicate members

thistuple	=	
(“apple",	"banana",	“apple”,	
“cherry”)

• Indexed the same way as lists

thistuple[0]	=>	“apple"

thistuple[-1]	=>	“cherry”

thistuple[1:3]	=>	(“banana”,	
“apple”)

• Once a tuple is created, items cannot be
added or changed

• Workaround: Change to list, back to tuple

• Check if item exists

if	"apple"	in	thistuple:

		print("Yes,	'apple'	is	in	the	fruits	
tuple")

• Tuple with one item needs comma

thistuple	=	(“apple",)	#Tuple

thistuple	=	(“apple")	#Not	a	tuple

• Built in functions

thistuple.count(“apple")

thistuple.index(“apple")

sets

19

• Collection which is unordered, (half)
changeable, and does not allow
duplicates

• Written with curly brackets

thisset	=	{“apple”,	"banana",	
“cherry”}

• Cannot access items by index, but
can loop through and check for items
for	x	in	thisset:

		print(x)

print("banana"	in	thisset)

• Cannot change existing items, but can
add and remove items

thisset.add(“orange")

thisset.update(["orange",	"mango",	“gra
pes"])

thisset.remove("banana")

• Also have set operations just like
mathematical objects

set1	=	{"a",	"b",	"c"}

set2	=	{1,	"b",	3}

set1.union(set2)		#Union

set1.intersection(set2)		#Intersection

set1.difference(set2)		#set1	\	set2

set1.issubset(set2)		#Testing	if	subset

dictionaries

20

• Collection which is unordered,
changeable, and indexed

• Also written with curly brackets, but
have keys and values

thisdict	=	{

		"brand":	"Ford",

		"model":	"Mustang",

		"year":	1964

}

• Access/change/add values of items by
referring to the key name

thisdict[“model"]

thisdict[“year"]	=	2019

thisdict[“color”]	=	"red"

• Can iterate through the keys, values, or both

for	x	in	thisdict:

		print(thisdict[x])

for	x	in	thisdict.values():

		print(x)

for	x,	y	in	thisdict.items():

		print(x,	y)

• Like other collections, can create a dictionary of
dictionaries

child1	=	{"name"	:	“Emil",	"year"	:	2004}

child2	=	{"name"	:	“Tobias",	"year"	:	2007}

child3	=	{"name"	:	“Linus",	"year"	:	2011}

myfamily	=	{“child1"	:	child1,	"child2"	:	child2,	
"child3"	:	child3}

• Use the copy method (not direct assignment) to
make a copy of a dictionary

mydict	=	thisdict.copy()

