
1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 1/9

Data structures
Python, unlike C, C++, and Java, has a number of built-in data structures. We will go through
several of them here.

Lists
Lists are one of the most basic data structures, and are often used as building blocks for more
complex data structures. Lists in Python are sequence types: they have a specified order that is
preserved when you, for example, use a for loop to access the list.

You can create lists using very simple notation:

In [1]:

In [2]:

And, of course, Python does not care what type of elements you put in the list:

In [1]:

In [2]:

You can also instantiate an empty list:

In [5]:

Or use some syntactic trickery to instantiate a list of a certain size, with default elements:

In [3]:

[0, 2, 4, 6, 8]

['a', 'b', 'c']

['a', 1, 2]

[]

[0, 0, 0, 0, 0]
['a', 'a', 'a', 'a', 'a']

list1 = [0, 2, 4, 6, 8]

print(list1)

list1 = ["a", "b", "c"]
print(list1)

list1 = ["a", 1, 2]
print(list1)

list1 = []
print(list1)

list1 = 5 * [0]
list2 = 5 * ['a']
print(list1)
print(list2)

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 2/9

Although in many ways lists behave like arrays, lists can be changed. You can add elements to the
end of the list:

In [4]:

Or add elements to the middle of the list:

In [5]:

Remove an element from the list (in this case, the fourth element)

In [8]:

Or even remove the first element from the list that has a particular value:

In [9]:

You can access elements in a list just like they are arrays, or iterate over them

In [10]:

In [11]:

Note that when a variable is referring to a list in Python (like almost all other variables except basic
types like int s), that variable contains a reference (think "pointer") to the list; it does not talk
about the list itself. This can lead to some interesting effects:

[0, 0, 0, 0, 0, 2]

[0, 0, 5, 0, 0, 0, 2]

[0, 0, 5, 0, 2]

[0, 0, 0, 2]

2

0
0
0
2

list1.append(2)
print(list1)

list1.insert(2, 5)
print(list1)

list1.pop(3)
print(list1)

list1.remove(5)
print(list1)

print(list1[3])

for i in list1 :
 print(i)

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 3/9

In [14]:

What has happened is that list2 and list1 both refer to the same actual list in memory, so if
the list changes, both variables refer to the changed list. If you want to make a copy instead, there
are several ways to do it. Here are two:

In [15]:

That first line is a little interesting. It is actually a special case of list slicing: copying specified
indices out of a list. The syntax of slicing is:

newlist = oldlist[l:h]

which copies the indices [l:h]) of the old list (note that the interval on the right is open) to the
new list.

In [20]:

Note that if you do not provide l , it defaults to 0, and if you do not provide h , it defaults to

[0, 0, 0, 2]
[0, 0, 0, 2, 7]
[0, 0, 0, 2, 7]

[0, 0, 0, 2, 7]
[0, 0, 0, 2, 7]
[0, 0, 0, 2, 7]
[0, 0, 0, 2, 7, 8]
[0, 0, 0, 2, 7]
[0, 0, 0, 2, 7]

[7, 3, 9]
[3, 1, 7, 3]
[3, 9, 2]

list2 = list1
print(list2)
list2.append(7)
print(list2)
print(list1) #this also changes!

list3 = list1[:]
list4 = list1.copy()
print (list1)
print (list3)
print (list4)

list1.append(8)
print (list1)
print (list3)
print (list4)

orig = [3, 1, 7, 3, 9, 2]
slice1 = orig[2:5]
slice2 = orig[:4]
slice3 = orig[3:]
print(slice1)
print(slice2)
print(slice3)

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 4/9

len(list)

You can also add an optional third argument that specified a stride, to, for example, copy every 2nd
element of the list:

In [21]:

You can even use a negative stride to walk over the list in reverse (note that l and h will change
places in that case):

In [22]:

Finally, note that lists can contain other lists:

In [24]:

Strings
Interestingly, lists are not the only sequence type we have encountered. Strings in Python are also
sequence types:

In [12]:

In [13]:

Tuples

[3, 7, 9]

[2, 9, 3, 7, 1, 3]

[[0, 1], [2, 3], [4, 5, 6]]

Hello

5
H
e
l
l
o

slice4 = orig[0:len(orig):2]
print(slice4)

slice5 = orig[::-1]
print(slice5)

nested = [[0, 1], [2, 3], [4, 5, 6]]
print(nested)

string1 = 'Hello'
print(string1)

print(len(string1))
for s in string1 :
 print (s)

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 5/9

Tuples in Python are kind of like lists, except that unlike lists, you cannot change them once they
are created: you cannot make them longer, remove elements, or even change the elements
themselves:

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

One thing to note, though, is that if an element of a tuple is a reference to some other thing, you
can still change that other thing -- you just can't change the tuple itself. So, for example, if a tuple
has a list as one of its elements, the list can be changed, you just can't make the tuple refer to a
different list.

(1.5, 2.7)

1.5

2.7

1.5
2.7

--
AttributeError Traceback (most recent call las
t)
<ipython-input-35-6773d97c83ad> in <module>
----> 1 tuple1.append('x')

AttributeError: 'tuple' object has no attribute 'append'

--
TypeError Traceback (most recent call las
t)
<ipython-input-36-5e0f22de5ab3> in <module>
----> 1 tuple1[0] = 3

TypeError: 'tuple' object does not support item assignment

tuple1 = (1.5, 2.7)
print(tuple1)

print(tuple1[0])

print(tuple1[1])

for i in tuple1 :
 print (i)

tuple1.append('x')

tuple1[0] = 3

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 6/9

In [37]:

In [38]:

In [39]:

In [40]:

In [41]:

In [42]:

One useful way of extracting things out a tuple is unpacking them, using the following notation.
(Note that this is what is happening under the hood if you write a function that returns multiple
values: those values are packaged up into a tuple, that is then unpacked)

In [43]:

In [44]:

In [45]:

Sets
Sets are data structures with the following properties:

1. They are unordered: the order that you retrieve elements from a set (if you are printing them out
or iterating over them) is not guaranteed.

2. They are unique: any element can only exist in the set once.

In [46]:

[]

[2]

(2.3, [2])

Out[42]: (1.5, 2.7)

1.5

2.7

{'c', 'b', 'a'}

tuple2 = (2.3, [])

print(tuple2[1])

tuple2[1].append(2)

print(tuple2[1])

print(tuple2)

tuple1

i, j = tuple1

print(i)

print(j)

set1 = {'a', 'b', 'c'}
print(set1)

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 7/9

In [47]:

In [49]:

In [50]:

In [51]:

In [52]:

In [53]:

In [54]:

Dictionaries
Dictionaries are like sets, except instead of just holding individual items, they hold pairs of items: a
key and a value. Each key is associated with a value, and a dictionary guarantees that any key
appears in the dictionary at most once:

In [55]:

{'c', 'b', 'a'}

c
b
a

{'c', 'd', 'b', 'a'}

{'c', 'd', 'b'}

set()

{'a'}

{'a'}

{'a': 0, 'b': 1, 'c': 3}

set2 = {'a', 'b', 'c', 'a'}
print(set2)

for s in set1 :
 print(s)

set2.add('d')
print(set2)

set2.remove('a')
print(set2)

set3 = set()
print(set3)

set3.add('a')
print(set3)

set3 = set()
set3.add('a')
set3.add('a')
print(set3)

dict1 = {'a' : 0, 'b' : 1, 'c' : 3}
print(dict1)

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 8/9

In [56]:

In [57]:

In [58]:

In [59]:

In [60]:

In [61]:

In [62]:

In [63]:

0

1

3

--
KeyError Traceback (most recent call las
t)
<ipython-input-59-4c418ccf3f33> in <module>
----> 1 print(dict1['d'])

KeyError: 'd'

4

3

a
3
b
1
c
3
d
4

Key a has value 3
Key b has value 1
Key c has value 3
Key d has value 4

print(dict1['a'])

print(dict1['b'])

print(dict1['c'])

print(dict1['d'])

dict1['d'] = 4
print(dict1['d'])

dict1['a'] = 3
print(dict1['a'])

for k in dict1 :
 print (k)
 print (dict1[k])

for k, v in dict1.items() :
 print("Key {} has value {}".format(k, v))

1/17/2020 code-data-structures - Jupyter Notebook

localhost:8888/notebooks/code-data-structures.ipynb# 9/9

In [64]:

In []:

Out[64]: 4

len(dict1)

