
ECE 20875
Python for Data Science

Histograms

David Inouye and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni, 
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)



• You’re managing a coffee shop

• Assuming you want to maximize profit, how 
much coffee should you buy for each day?

• Too much → Surplus, waste money :(

• Too little → Unsatisfied demand, under-
caffeinated customers :(

• What should you do?

a problem



• Count how many people get coffee in a 
day

• Day 1: 37 people

• Likely different each day of the week, 
and the type of coffee (cold brew, late, 
etc.) also has an impact

• Assume such factors do not matter 
(problem is still interesting!)

• Should we just get enough coffee for 37 
people?

collect data



• Day 2: 43

• Day 3: 48

• Day 4: 41

• Day 5: 46

• Day 6: 19 (!)

• Day 7: 38

• …

(keep) collect(ing) data



[37, 43, 48, 41, 46, 19, 28, 35, 34, 38, 
31, 32, 32, 23, 23, 33, 35, 39, 34, 28, 
39, 28, 29, 38, 28, 30, 25, 35, 39, 35, 
31, 28, 25, 26, 15, 31, 28, 32, 40, 21, 
34, 38, 30, 47, 34, 31, 51, 30, 41, 36, 
33, 51, 22, 25, 29, 50, 32, 39, 25, 37, 
54, 33, 36, 25, 30, 22, 41, 35, 31, 40, 
30, 33, 27, 36, 27, 34, 24, 41, 37, 29, 
48, 40, 31, 32, 33, 32, 40, 31, 32, 40, 
31, 33, 32, 38, 37, 41, 37, 39, 38, 42]

100 days later …



• Staring at a list of numbers is not 
very illuminating

• Visualizing the data in a useful way 
can help reveal patterns

• Data visualization is an 
important subset of data science

• Since the data consists of a single, 
numeric variable, we can try a 
histogram

visualize the data



• A histogram visualizes observations of 
a random variable 

• Each bar in a histogram is a bin 

• Each observation is placed into one 
bin 

• The count (size/height) of each bin is 
the number of observations in that bin 

d

x1, x2, . . .

x1 : 15 ≤ d < 20, x2 : 20 ≤ d < 25, . . .

x1 : 2, x2 : 6, . . .

building a histogram

import	matplotlib.pyplot	as	plt	
_	=	plt.hist(data,	bins=8,	range=(15,55))	
plt.xlabel('#	of	coffee	drinkers')	
plt.ylabel(‘frequency')	
plt.show()



• The empirical (measured) frequency of 
each bin is the fraction of data in that bin 
 
 
 
 

• Often, count is also referred to as 
frequency

• The y-axis numbers telling us what exactly 
is plotted

• (More details on later slides)

building a histogram

_	=	plt.hist(data,	bins=8,	range=(15,55))	
plt.xlabel('#	of	coffee	drinkers')	
plt.ylabel('frequency')
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• Remember: This histogram comes 
from observed data

• If we repeat the experiment, we 
might not get the same histogram!

• In fact, there will almost surely be 
some difference at this sample size

• This is because what we have is a 
sample of the true distribution

repeating the experiment

_	=	plt.hist(data,	bins=8,	range=(15,55))	
plt.xlabel('#	of	coffee	drinkers')	
plt.ylabel('frequency')



• Suppose we collect 1000 observations 
instead of 100

• The result on the right looks basically 
the same!

• Using the same number of bins

• Each bin has more observations in it

• But the relative frequencies are not 
changing much

• But now that we have a larger sample, 
we can add more bins to see a finer 
granularity of the distribution

collecting a larger sample

_	=	plt.hist(data,	bins=8,	range=(15,55))	
plt.xlabel('#	of	coffee	drinkers')	
plt.ylabel('frequency')



• This looks better!

• Gives us a good sense of what the 
data looks like, and what the 
underlying distribution is

• What would happen if we used 
more than 40 bins here?

adding more bins

_	=	plt.hist(data,	bins=40,	range=(15,55))	
plt.xlabel('#	of	coffee	drinkers')	
plt.ylabel('frequency')



• This looks even better!

• As we add more data points, 
our histogram looks more and 
more like the “true” shape of 
the underlying distribution

• We’ll get in to what this 
means when we talk about 
distributions and sampling

adding even more data

_	=	plt.hist(data,	bins=40,	range=(15,55))	
plt.xlabel('#	of	coffee	drinkers')	
plt.ylabel('frequency')



histogram bin normalization
•Count - y-axis is the count in each bin, denoted 


• , sum of all bins is total number of samples 


• Probability - y-axis is probability for each bin, denoted 


• , sum of all bin probabilities is 1


•Density - y-axis is normalized by both probability and bin width, 


• So , i.e., the area under the curve is 


• “Frequency” can be used for both “count” and “probability” above
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_	=	plt.hist(data,	bins=8,	
range=(15,55),	density=‘True’)



• The histogram has a few parameters

• Number of bins , width of bins , and even number 
of samples  can be viewed as one

• Bins don’t even have to be homogeneous

• Several formulas have been proposed for choosing  
and  based on the sample

• Square root: 

• Sturges’ formula: 

• Rice rule: 

• Scott’s normal reference rule: 

• How do we reason about the “optimal” choice?
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n = ⌈ m⌉

n = ⌈log2 m⌉ + 1

n = ⌈2m1/3⌉

w = 3.5 ̂σ/m1/3

choice of bins



• Choosing large bin size 

• Broad range of points (some rare, some 
common) put into the same bin and given 
the same estimate

• Choosing small bin size 

• Each bin is based on fewer samples, so 
harder to estimate how likely the bin is

• In the limit: Buckets of size 0 (is it practical?)

• So how do we choose the bin size in general?

w

w

bin width intuition



evaluation of histograms
• We can choose many different bin widths  (or equivalently 

the number of bins )


• How do we evaluate which bin width  is better?


• Visual appeal - Which is most visually appealing to 
humans?


• Usefulness - Which helps the owner know how much 
coffee to make? 


• Mathematical metrics - Which satisfies some mathematical 
notion of goodness? (Ideally this is tied to usefulness)


• We will focus on mathematical metrics
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estimated vs. “true” model
• First, we assume there is some “true” underlying model 

(often denoted by  ) for the phenomena of interest


• Importantly, this “true” model is unknown (or hidden)


• For example, we don’t know before collecting data the 
distribution of coffee purchases.


• Even after collecting data, we can only estimate the 
distribution.


• Histograms are an estimate (or approximation, often 
denoted by  ) of the true distribution. 
 

f(x)

̂f(x)



• We can pick the bin size  that minimizes the error 
of estimating a point

• The Integrated Square Error (ISE) of a 
histogram can be written as a function of the bin 
width (i.e., the smoothing parameter 
 

 

• Here,  is the density estimate of the histogram 
with  samples

• However,  is the “true” but unknown model, so 
how do we compute ?

w
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minimizing the estimation error



• The Integrated Square Error (ISE):

 

• We can approximate with data samples by 
, where

•  is bin width,  is the number of samples and 
 are the bin probabilities

• We can choose the “optimal” bin width by 
minimizing , which approximates !
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estimating the error with samples



• The brute-force way is to try as many values of  
as possible and choose the best

• Better to work with  here in this case, since 
there is a finite number of possibilities

• For each :

• calculate 

• use this to calculate 

Plot the results, choose the best one

• To narrow down the number of values we need 
to try, grid search procedures are also possible
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