ECE 20875 Python for Data Science

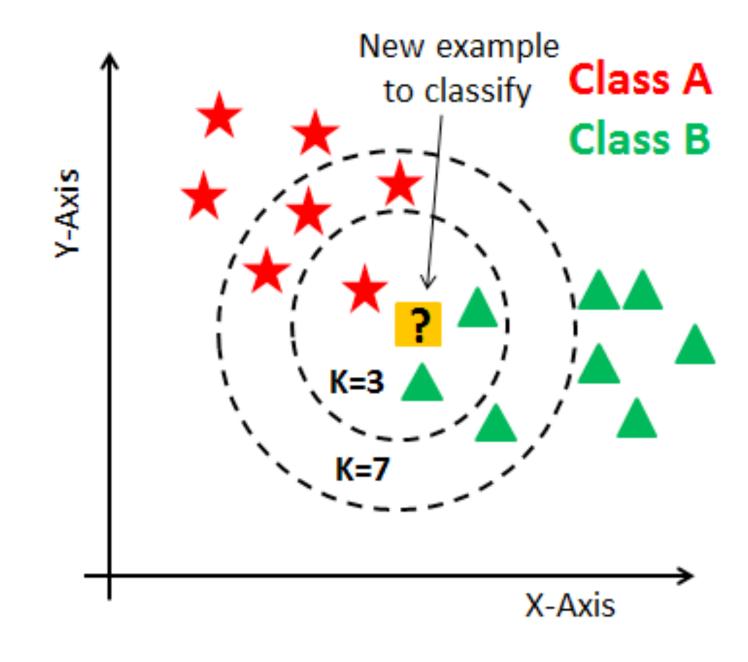
David Inouye and Qiang Qiu

(Adapted from material developed by Profs. Milind Kulkarni, Stanley Chan, Chris Brinton, David Inouye)

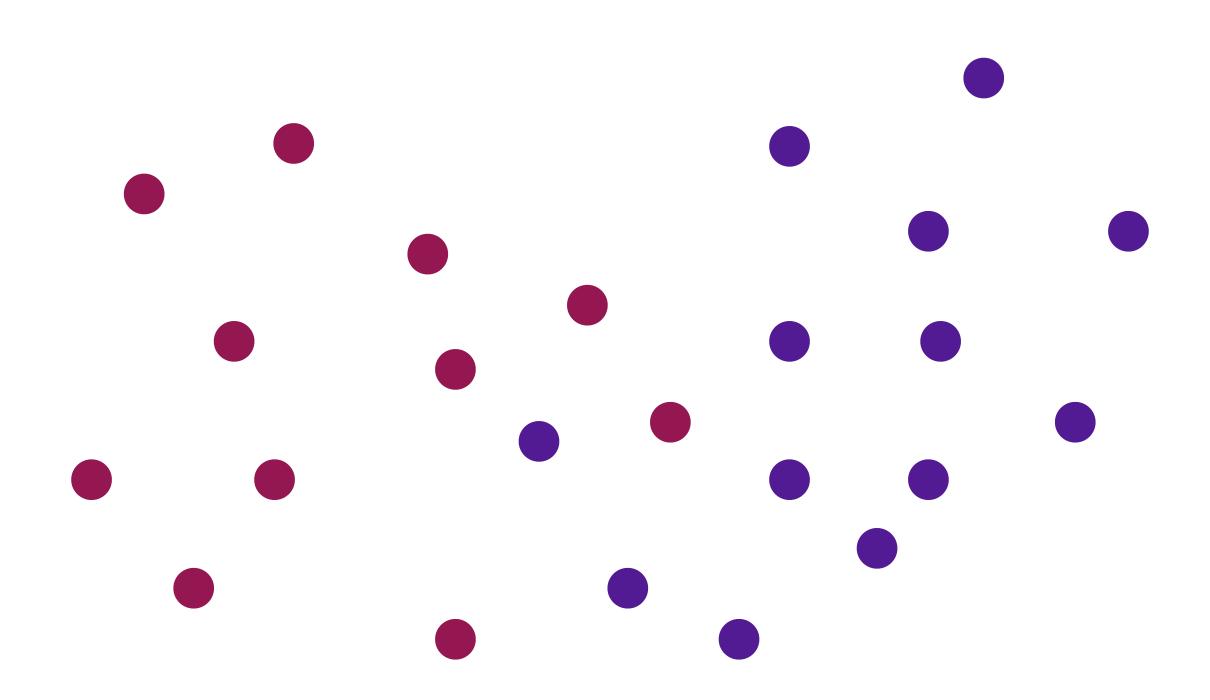
classification: k-nearest neighbor

k-nearest neighbor

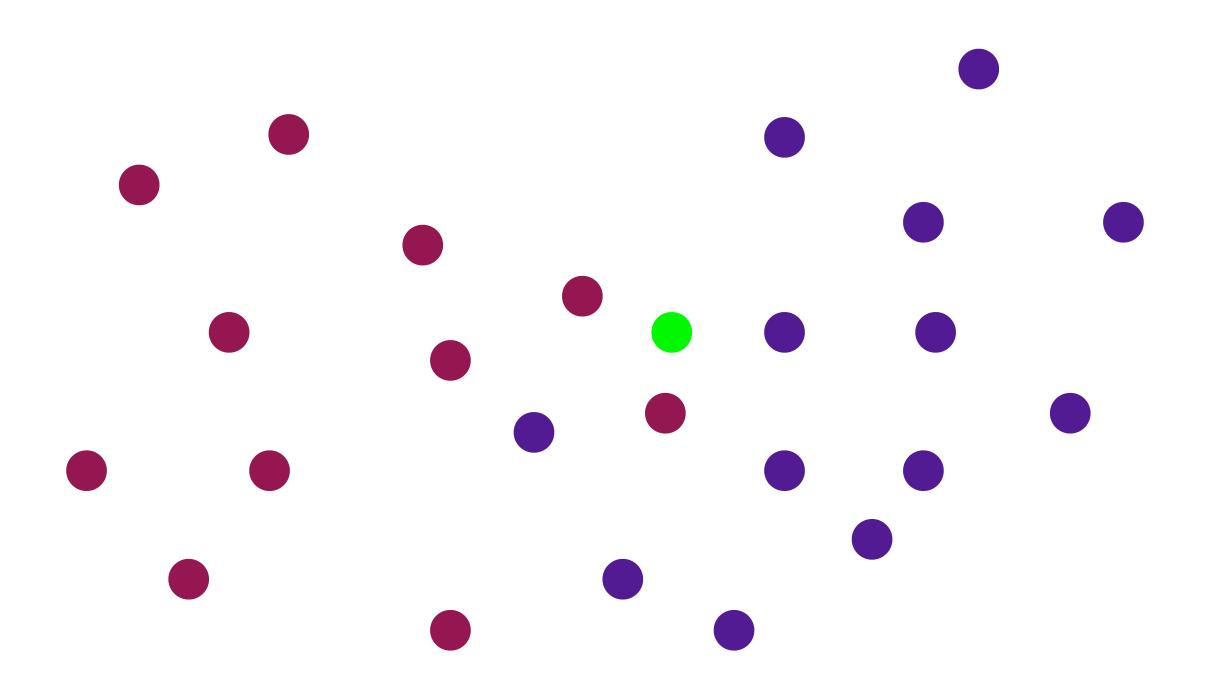
- Naïve Bayes is a nice classifier, but it is parametric
 - We must have a model of the data in mind, and some prior knowledge, to use it effectively.
- What if we don't have any such knowledge? What if all we have is our input data, and it does not seem to fit any existing distribution well?
- k-nearest neighbor (kNN) is a classifier that requires no assumptions about the data:
 - Look at the classes of the *k*-nearest points and pick the most frequent one



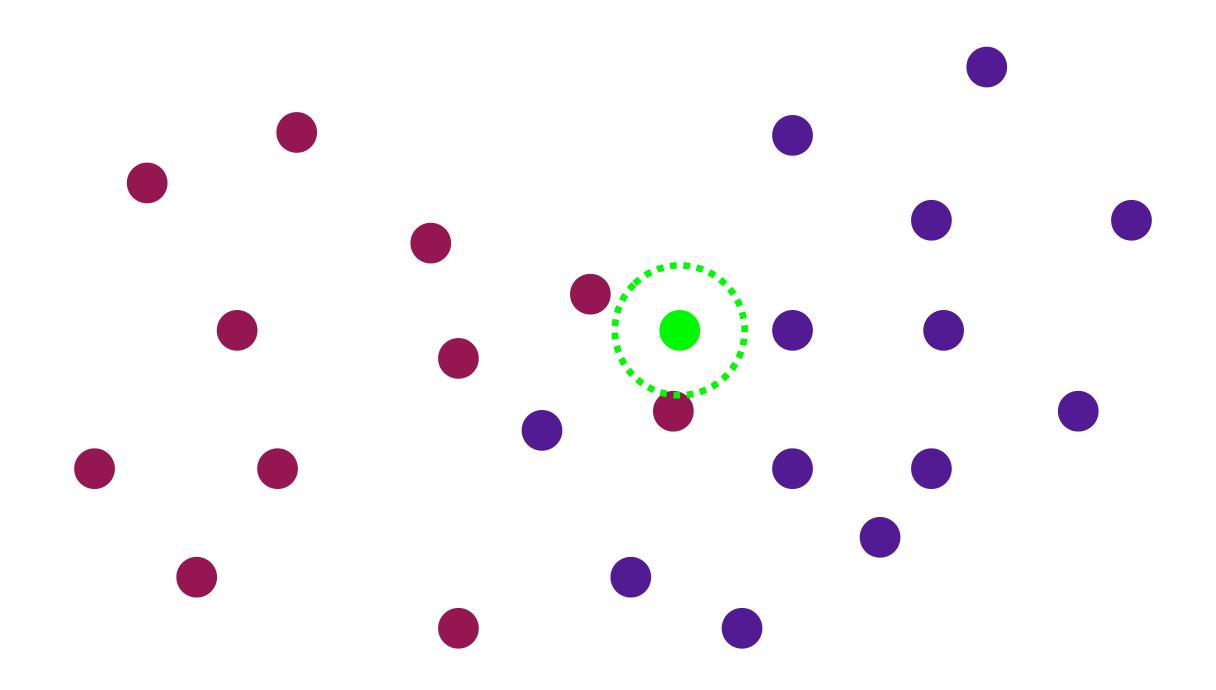
Start with labeled training data, just like naïve Bayes



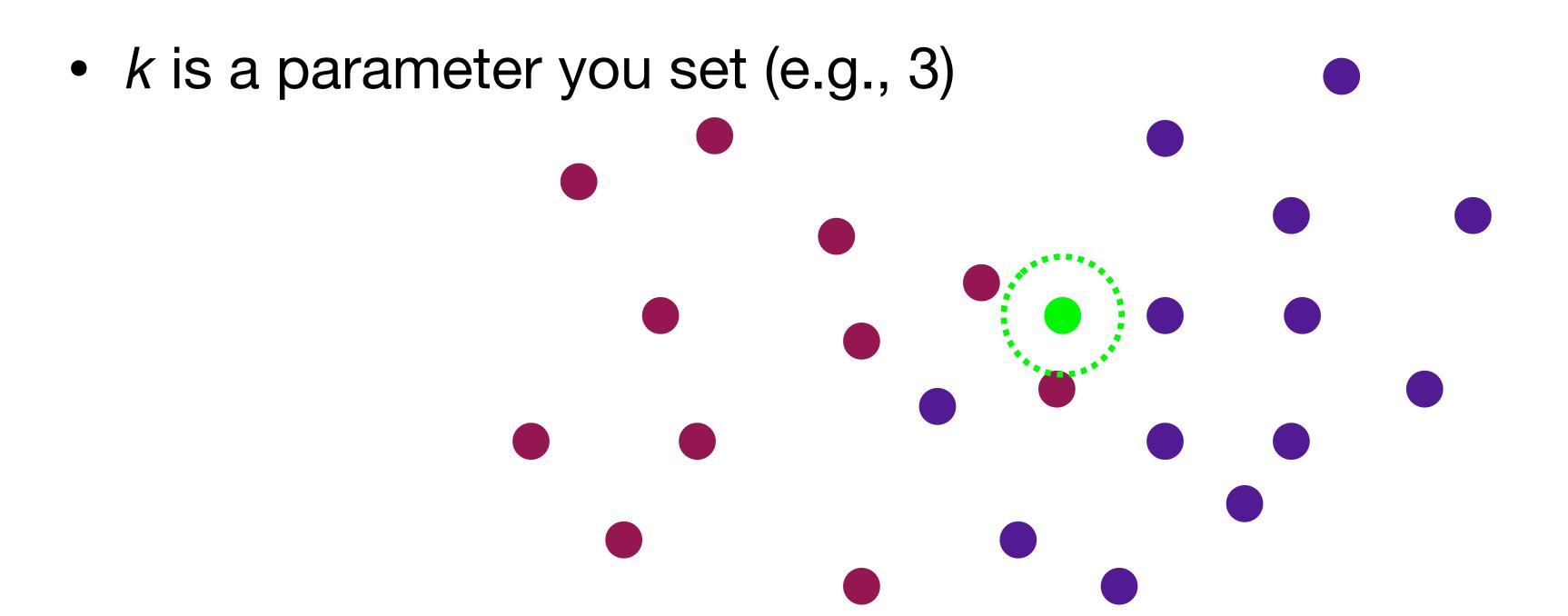
Take new data point



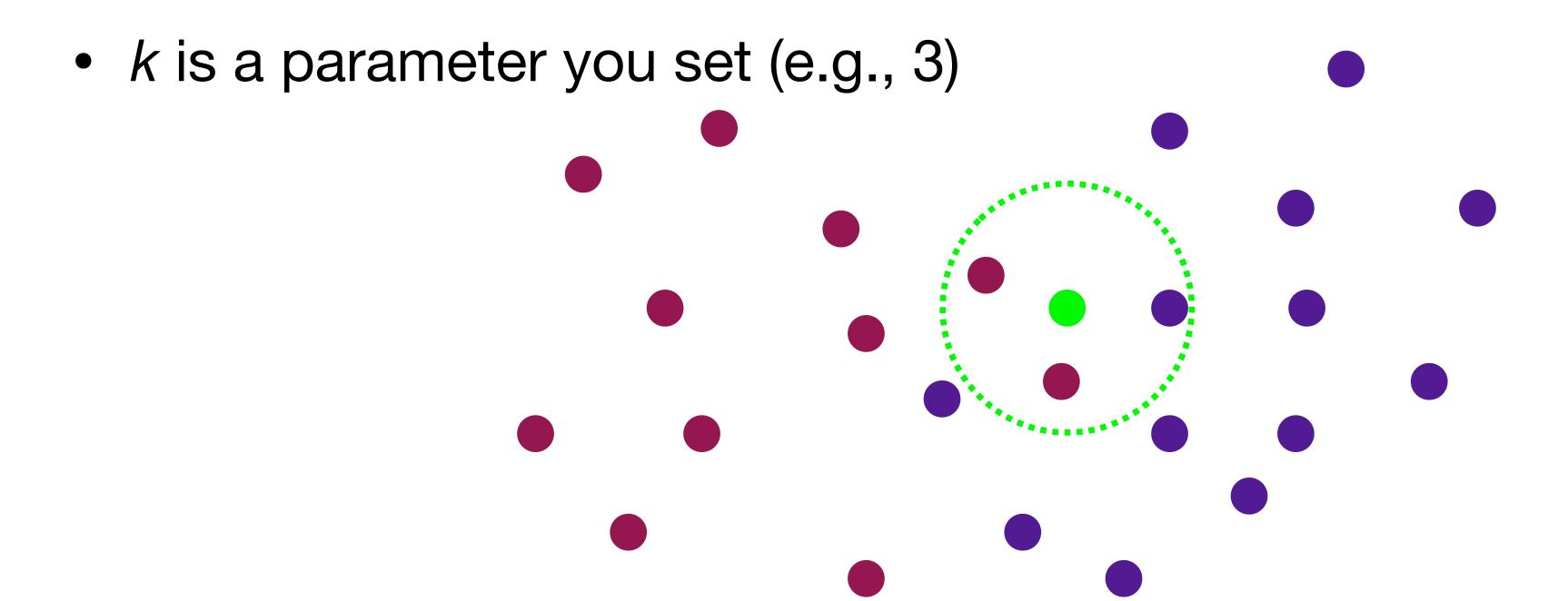
Draw a circle around it



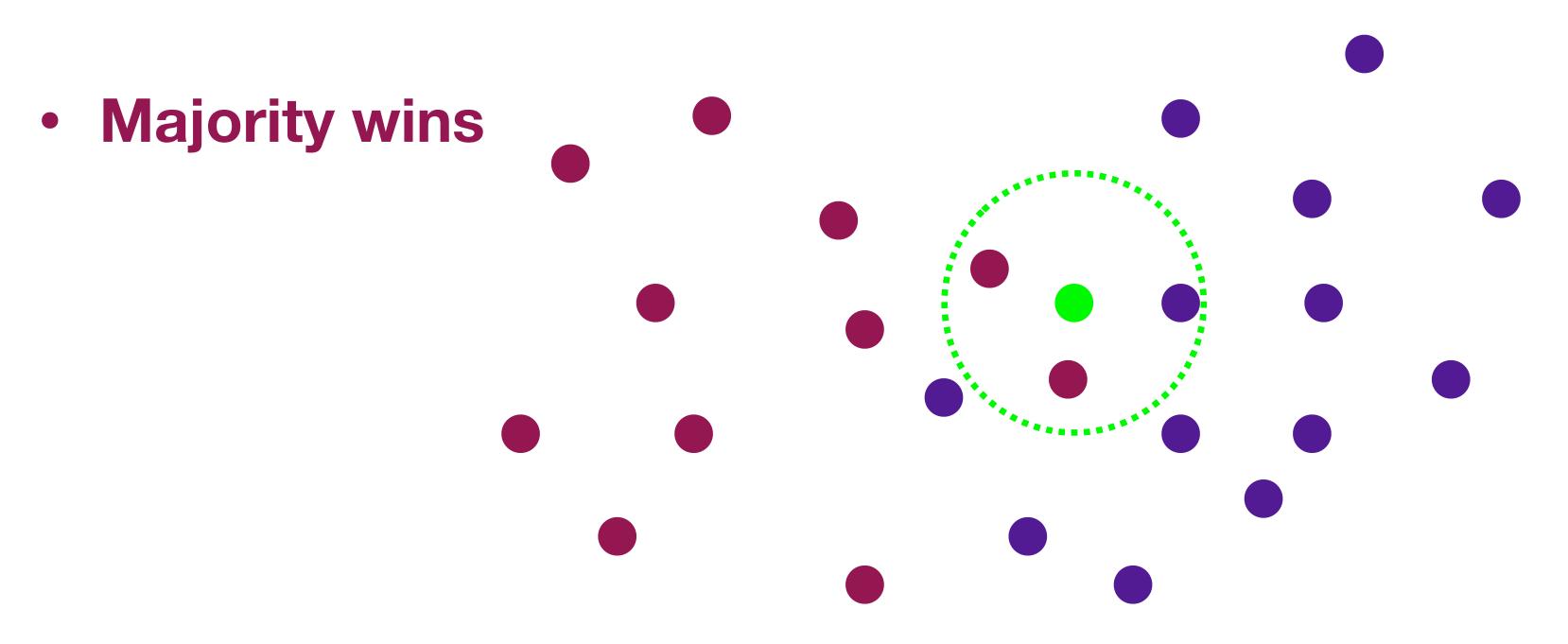
• Grow the circle until it has k other points in it



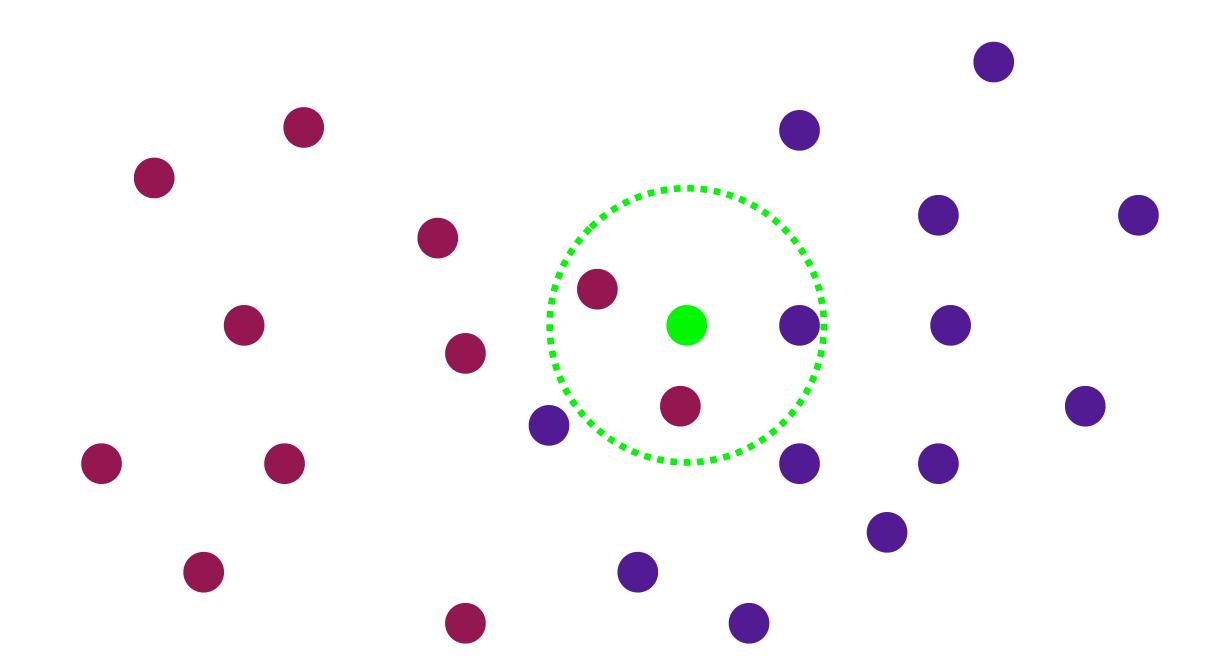
• Grow the circle until it has k other points in it



Count how many points from class 1 are in the circle and how many from class 2



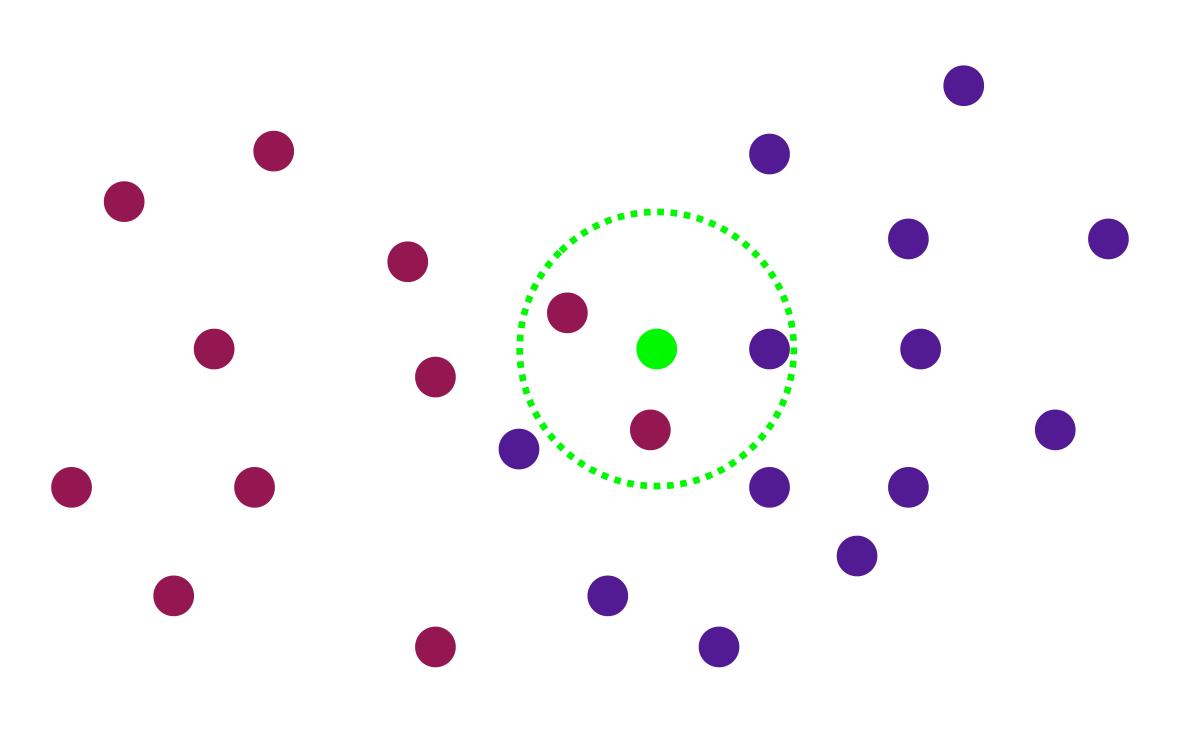
- Count how many points from class 1 are in the circle and how many from class 2
 - Majority wins



- How to choose k?
 - Larger k means we are less sensitive to outliers, but also less sensitive to possibly informative (very near) neighbors
 - Cross validation!

formal algorithm and python

- Algorithmic interpretation:
 - Find the distance $\|x-x_0\|$ from new point x_0 to every other point x
 - Sort by distance, pick closest k points
 - Predicted class is the one with the most "votes" from these \boldsymbol{k}
- In Python
 - from sklearn.neighbors import KNeighborsClassifier
 - https://scikit-learn.org/stable/modules/ classes.html#module-sklearn.neighbors



pros vs cons

- + Simple concept for classifier
- + No models or prior knowledge required
- Expensive to use model (compute distances from all other points)
- Does not help with missing data (classifier is only as good as labeled training data)
- The intuition and usefulness can breakdown in high dimensions (what does it mean to "near" in 1000 dimensions?)

binary evaluation metrics

• With regression, we used MSE (and r^2) as our evaluation metrics

see sklearn.metrics
in Python

 In classification, these are not valid, because our predictions are either right or wrong

 For binary classification, we typically report several metrics (on a test set), based on a confusion matrix (shown to the right).
 The most common three are:

		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN + FP)}$
		Precision $\frac{TP}{(TP + FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

Predicted Class

- Accuracy: Fraction of correct predictions
- Precision: Fraction of correct predictions in the predicted positive class
- Recall (or sensitivity): Fraction of correct predictions in the actual positive class

composite binary metrics

- In regression problems, MSE is convenient: Single number that indicates quality
- With classification problems, none of these confusion table metrics tell the whole story:
 - If there is significant class imbalance, accuracy can look very good even if the classifier is not
 - For example, suppose 90% of cars are minivans and 10% are sports cars. If we always predict minivan, we will have 90% accuracy!
- There are two composite metrics that can be useful:
 - **F1 score**: Harmonic mean between precision and recall (both need to be high for the F1 score to be high)
 - AUROC: Area under true/false positive curve from varying decision threshold from 0 (predict all negatives) and 1 (predict all positives)

