
Text Processing with nltk
Python's standard library for text processing is called the natural language toolkit ( nltk ). In this
tutorial, we will learn how to pre-process text data using nltk and other built-in Python functions,
and then how to build a document-word matrix for analysis. In HW9, you will continue from this
point to build tf-idf scores.
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In this tutorial, we will work with the Universal Declaration of Human Rights as our corpus. The text
file is available with this tutorial on the course website. We will consider each line in the file to be a
"document".
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Step 1: Tokenization

First, we will break the text into the tokens (n-grams) that we want to consider. In this case, the

<class 'str'> 
<class 'list'> 
69 
['Whereas recognition of the inherent dignity and of the equal and inalie
nable rights of all members of the human family is the foundation of free
dom justice and peace in the world', 'Whereas disregard and contempt for 
human rights have resulted in barbarous acts which have outraged the cons
cience of mankind and the advent of a world in which human beings shall e
njoy freedom of speech and belief and freedom from fear and want has been 
proclaimed as the highest aspiration of the common people', 'Whereas it i
s essential if man is not to be compelled to have recourseas a last resor
t to rebellion against tyranny and oppression that human rights should be 
protected by the rule of law', 'Whereas it is essential to promote the de
velopment of friendly relations between nations', 'Whereas the peoples of 
the United Nations have in the Charter reaffirmed their faith in fundamen
tal human rights in the dignity and worth of the human person and in the 
equal rights of men and women and have determined to promote social progr
ess and better standards of life in larger freedom'] 

import string
import nltk
import numpy as np

with open("universal_decl_of_human_rights.txt", "r") as myfile:
    corpus = myfile.read()  # corpus is all the text in the file
    docs = corpus.splitlines()  # docs is a list of all the documents, 
                                # with each document being one line of the 

print(type(corpus))
print(type(docs))
print(len(docs))
print(docs[0:5])



tokens are words. We can tokenize manually, or using nltk , with only subtle differences between
the two approaches:
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In this example, we are interested in analyzing the words in the document. Thus, as part of the
tokenization process, we will want to remove punctuation. We can use a list comprehension to do
this:
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Step 2: Lowercase and Stopword Removal

Next, we need to make all words lowercase, as well as remove the stopwords from analysis. After
downloading a standard stopword list, we can use the .lower()  method in a list comprehension
and do it all in one line:
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['Whereas', 'recognition', 'of', 'the', 'inherent', 'dignity', 'and', 'o
f', 'the', 'equal', 'and', 'inalienable', 'rights', 'of', 'all', 'member
s', 'of', 'the', 'human', 'family', 'is', 'the', 'foundation', 'of', 'fre
edom', 'justice', 'and', 'peace', 'in', 'the', 'world'] 

[nltk_data] Downloading package punkt to /Users/cgb/nltk_data... 
[nltk_data]   Package punkt is already up-to-date! 

[nltk_data] Downloading package stopwords to /Users/cgb/nltk_data... 
[nltk_data]   Package stopwords is already up-to-date!

['whereas', 'recognition', 'inherent', 'dignity', 'equal', 'inalienable', 
'rights', 'members', 'human', 'family', 'foundation', 'freedom', 'justic
e', 'peace', 'world'] 

# a) tokenize it manually 
doc_tokens_0 = [x.split() for x in docs]
 
# b) use nltk, for more info refer to https://www.nltk.org/index.html
nltk.download('punkt')
doc_tokens = [nltk.word_tokenize(x) for x in docs] 
 
# a) and b) have suttle differences
# specifically, if docs is "x, y" 
# a) ['x,', 'y']  b) ['x', ',', 'y']
 
print(doc_tokens[0])

doc_tokens_no_punc = [[x for x in a_doc if x not in string.punctuation] for

nltk.download('stopwords')
from nltk.corpus import stopwords
stop = stopwords.words('english')

doc_tokens_clean = [[x.lower() for x in words if x.lower() not in stop] for
print(doc_tokens_clean[0])



Step 3: Lemmatizing/Stemming

Next, we will want to reduce words down to simpler forms so that different forms of the same word
are counted in a single token. There are two ways to do this:

Stemming reduces inflected words to their word stem (e.g.,studies, studying -> studi).
Lemmatization maps words to their dictionary form, representing them as words (e.g., studies,
studying -> study).

Lemmatization is more complex, because we need to tag a word's Part of Speech (POS) to get the
right result. Because of this, stemming is often used. But when POS tagging is reasonable,
lemmatization is preferred.

In nltk, we have the WordNetLemmatizer  for lemmatizing and the PorterStemmer  for
stemming:
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In the rest of this tutorial, we will proceed with lemmatizing. But before we do that, here are a few
examples which will illustrate the differences between stemming and lemmatizing:

In [23]:

['whereas', 'disregard', 'contempt', 'human', 'rights', 'resulted', 'barb
arous', 'acts', 'outraged', 'conscience', 'mankind', 'advent', 'world', 
'human', 'beings', 'shall', 'enjoy', 'freedom', 'speech', 'belief', 'free
dom', 'fear', 'want', 'proclaimed', 'highest', 'aspiration', 'common', 'p
eople'] 

[nltk_data] Downloading package wordnet to /Users/cgb/nltk_data... 
[nltk_data]   Package wordnet is already up-to-date! 

Word: stones    , Stem: stone     , Lemma: stone      
Word: jokes     , Stem: joke      , Lemma: joke       

nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
doc_tokens_clean_lem = [[lemmatizer.lemmatize(x) for x in words] for words 
print(doc_tokens_clean[1])

stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
#The lemmatizer will assume we want the word lemmatized to a noun unless we
#Changing the POS tag will then change the result we get
def show_words(words):
    for w, pos in words:
        print(f'Word: {w:10}, Stem: {stemmer.stem(w):10}, Lemma: {lemmatize
show_words([('stones', 'n'), ('jokes', 'n')])
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Step 4: Building the doc-word matrix

Now that we have the cleaned up text stored in doc_tokens_clean_lem , we can proceed to
build the document-word matrix. We will investigate two ways of doing this: one which is a more
straightforward implementation, and another which leverages numpy  to get some efficiency
improvements. These efficiency gains won't make much of a difference in this reasonably small
example, but when we are dealing with a corpus of millions of documents, it certainly will!

a) An intuitive way of building the document-word matrix
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Word: speak     , Stem: speak     , Lemma: speak      
Word: speaking  , Stem: speak     , Lemma: speak      
Word: spoken    , Stem: spoken    , Lemma: speak      

Word: spoke     , Stem: spoke     , Lemma: speak      
Word: spoke     , Stem: spoke     , Lemma: spoke      

Word: foot      , Stem: foot      , Lemma: foot       
Word: feet      , Stem: feet      , Lemma: foot       
Word: goose     , Stem: goos      , Lemma: goose      
Word: geese     , Stem: gees      , Lemma: goose      

Word: is        , Stem: is        , Lemma: be         
Word: are       , Stem: are       , Lemma: be         
Word: be        , Stem: be        , Lemma: be         

show_words([('speak', 'v'), ('speaking', 'v'), ('spoken', 'v')])

show_words([('spoke', 'v'), ('spoke', 'n')])

show_words([('foot', 'n'), ('feet', 'n'), ('goose', 'n'), ('geese', 'n')])

show_words([('is', 'v'), ('are', 'v'), ('be', 'v')])

#First, gather all of the unique words in the corpus into a list
word_list = []
for doc in doc_tokens_clean_lem:
    for word in doc:
        if(not(word in word_list)):
            word_list.append(word)
 
#Then, construct the bag-of-words representation of each document
doc_word_simple = []
for doc in doc_tokens_clean_lem:
    doc_vec = [0]*len(word_list) #Each document is represented as a vector 
    for word in doc:
        ind = word_list.index(word)
        doc_vec[ind] += 1 #Increment the corresponding word index
    doc_word_simple.append(doc_vec)
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b) A more efficient way using numpy
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Out[29]: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Out[30]: [1, 0, 0, 0, 0, 0, 1, 0, 1, 0]

Out[32]: array([[1, 1, 1, ..., 0, 0, 0], 
       [1, 0, 0, ..., 0, 0, 0], 
       [1, 0, 0, ..., 0, 0, 0], 
       ..., 
       [0, 1, 0, ..., 0, 0, 0], 
       [0, 0, 0, ..., 0, 0, 0], 
       [0, 0, 0, ..., 1, 1, 1]])

Out[33]: True

doc_word_simple[0][:10]

doc_word_simple[2][:10]

doc_word_simple = np.array(doc_word_simple) #Now we can use numpy operation

doc_word_simple

# A few optimizations:
# 1. Create a dictionary of words:indexes which has faster lookup time than
# 2. Allocate memory ahead of time via numpy
word_to_ind = {word:ind for ind, word in enumerate(word_list)}
doc_word = np.zeros((len(doc_tokens_clean_lem), len(word_list)))
for doc, doc_vec in zip(doc_tokens_clean_lem, doc_word):
    for word in doc:
        ind = word_to_ind[word]
        doc_vec[ind] += 1
 
# Check that this produces the same result
np.all(np.isclose(doc_word, doc_word_simple))


