
numpy  Tutorial and Review of Linear Algebra
Content and structure mainly from: http://www.deeplearningbook.org/contents/linear_algebra.html
(http://www.deeplearningbook.org/contents/linear_algebra.html)

A lot of data science builds off of the concept of matrices in linear algebra. Matrices are effective
ways of representing and manipulating data, and have useful properties when reasoning about
data.

The best way to work with matrices and vectors in Python is through the numpy  library. We will
look at numpy  in this tutorial.

In [47]:

Scalars
Single number
Denoted as lowercase letter
Examples

x ∈ R - Real number
z ∈ Z - Integer
y ∈ {0, 1, …, C} - Finite set
u ∈ [0, 1] - Bounded set
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Vectors
In notation, we usually consider vectors to be "column vectors"
Denoted as lowercase letter (often bolded)
Dimension is often denoted by d, D, or p.
Access elements via subscript, e.g., xi is the i-th element
Examples

x ∈ Rd - Real vector

1.1343 
-5 

import numpy as np

x = 1.1343
print(x)
z = int(-5)
print(z)

http://www.deeplearningbook.org/contents/linear_algebra.html


x =

x1
x2
⋮

xd

x = [x1, x2, …, xd]
T

In Python, we use numpy arrays for vectors (and matrices). These are defined using the .array
method in numpy .

[ ]
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Adding vectors in numpy
The operator +  does different things on numpy arrays vs Python lists:

For lists, Python concatenates the lists
For numpy arrays, numpy performs an element-wise addition
Similarly, for other binary operators such as - , + , * , and /
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We can also see this difference when we try to add a scalar to a vector. If the vector is a list, it
doesn't work, but if the vector is a numpy array, then it does.

[ 1.1343  6.2345 35.    ] 
[5 5 5] 

[1, 2, 30, 40] 
[31 42] 

x = np.array([1.1343, 6.2345, 35])
print(x)
z = 5 * np.ones(3, dtype=int)
print(z)

a_list = [1, 2]
b_list = [30, 40]
c_list = a_list + b_list
print(c_list)
a = np.array(a_list)  # Create numpy array from Python list
b = np.array(b_list)
c = a + b
print(c)
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Inner product
Inner product, dot product, or vector-vector multiplication produces scalar:

xTy = ∑
i
xiyi

Symmetric

xTy = (xTy)T = yTx

Can be executed in numpy via np.dot
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Matrices
Denoted as uppercase letter
Access elements by double subscript Xi , j or xi , j is the i, j-th entry of the matrix

Exception: can only concatenate list (not "int") to list 

Out[52]: array([2, 3])

a=[0 1 2] 
b=[11 22 33] 
a^T b = 88 

a^T b = 88 

# Adding scalar to list doesn't work
try:
    a_list + 1
except Exception as e:
    print(f'Exception: {e}' )

# Works with numpy arrays
a + 1

# Inner product
a = np.arange(3)
print(f'a={a}')
b = np.array([11, 22, 33])
print(f'b={b}')
adotb = 0
for i in range(a.shape[0]):
    adotb += a[i] * b[i]
print(f'a^T b = {adotb}')

# The numpy way via np.dot
adotb = np.dot(a, b)
print(f'a^T b = {adotb}')



Examples
X ∈ Rn× d

X =
1 2 3
4 5 6[ ]
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Matrix transpose
Changes columns to rows and rows to columns
Denoted as AT

For vectors v, the transpose changes from a column vector to a row vector

x =

x1
x2
⋮

xd

, xT =

x1
x2
⋮

xd

T

= [x1, x2, …, xd][ ] [ ]
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NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a row or column vector per
se, unlike in MATLAB.

[[ 0  1  2  3] 
 [ 4  5  6  7] 
 [ 8  9 10 11]] 
[[5 5 5] 
 [5 5 5] 
 [5 5 5]] 

[[0 1 2] 
 [3 4 5]] 
[[0 3] 
 [1 4] 
 [2 5]] 

X = np.arange(12).reshape(3,4)
print(X)
Z = 5 * np.ones((3, 3), dtype=int)
print(Z)

A = np.arange(6).reshape(2,3)
print(A)
print(A.T)
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Matrix product
Let XT

∈ Rm× n, Y ∈ Rn× p, then the matrix product Z = XTY is defined as:

Z = XTY = x1 x2 ⋯ xn T y1 y2 ⋯ yn =

xT1

xT2
⋮

xTn

y1 y2 ⋯ yn =

xT1y1 xT1y2 ⋯ xT1yn

xT2y1 xT2y2 ⋯ xT2yn
⋮ ⋮ ⋱ ⋮

xTny1 xTny2 ⋯ xTnyn

Equivalently this can be written as:

zi , j = ∑
k∈ { 1 , 2 , … , n }

xk , iyk , j

where Z ∈ Rm× p (notice how inner dimension is collapsed!).

[ ] [ ] [ ][ ] [ ]

A numpy vector [0 1 2 3 4] with shape (5,) 
Transpose of numpy vector [0 1 2 3 4] with shape (5,) 
A matrix with shape (5, 1): 
[[0] 
 [1] 
 [2] 
 [3] 
 [4]] 
A transposed matrix with shape (1, 5): 
[[0 1 2 3 4]] 

v = np.arange(5)
print(f'A numpy vector {v} with shape {v.shape}')
print(f'Transpose of numpy vector {v.T} with shape {v.T.shape}')
V = v.reshape(-1, 1)
print(f'A matrix with shape {V.shape}:\n{V}')
print(f'A transposed matrix with shape {V.T.shape}:\n{V.T}')
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In [59]:
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The naive triple for loop has cubic complexity: O(n3)

[[0 3] 
 [1 4] 
 [2 5]] 
[[0 1 2] 
 [3 4 5]] 
[[ 9. 12. 15.] 
 [12. 17. 22.] 
 [15. 22. 29.]] 

X with shape (2, 3) 
[[ 0 10 20] 
 [30 40 50]] 
Y with shape (2, 3) 
[[ 0 10 20] 
 [30 40 50]] 
Z = X^T Y = 
[[ 90. 120. 150.] 
 [120. 170. 220.] 
 [150. 220. 290.]] 

[[ 90 120 150] 
 [120 170 220] 
 [150 220 290]] 
[[ 90 120 150] 
 [120 170 220] 
 [150 220 290]] 

# Inner product version
X = np.arange(6).reshape(2, 3)
print(X.T)
Y = np.arange(6).reshape(2, 3)
print(Y)
Z = np.zeros((X.shape[1], Y.shape[1]))
for i in range(Z.shape[0]):
    for j in range(Z.shape[1]):
            Z[i, j] = np.dot(X[:, i], Y[:, j])
print(Z)

# Triple for loop
X = np.arange(6).reshape(2, 3) * 10
print(f'X with shape {X.shape}\n{X}')
Y = np.arange(6).reshape(2, 3)
print(f'Y with shape {X.shape}\n{X}')
Z = np.zeros((X.shape[1], Y.shape[1]))
for i in range(Z.shape[0]):
    for j in range(Z.shape[1]):
        for k in range(X.shape[0]):
            Z[i, j] += X[k, i] * Y[k, j]
print(f'Z = X^T Y =\n{Z}')

# Numpy matrix multiplication
print(np.matmul(X.T, Y))
print(X.T @ Y)



The naive triple for loop has cubic complexity: O(n )
np.matmul  and @  invoke special linear algebra algorithms in numpy which reduce this to 
O(n2.803)
Takeaway: Use numpy np.matmul  (or @ )

Element-wise (Hadamard) product
Normal matrix mutiplication C = AB is very different from element-wise (or more formally
Hadamard) multiplication, denoted C = A ⊙ B, which in numpy is just the star *
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Properties of matrix product
Distributive: A(B + C) = AB + AC
Associative: A(BC) = (AB)C
NOT commutative, i.e., AB = BA does NOT always hold
Transpose of multiplication (switch order and transpose of both):

(AB)T = BTAT

X with shape (2, 3) 
[[ 0 10 20] 
 [30 40 50]] 
Y with shape (2, 3) 
[[0 1 2] 
 [3 4 5]] 
Operation failed! Message below: 
operands could not be broadcast together with shapes (3,2) (2,3)  

X with shape (2, 3) 
[[ 0 10 20] 
 [30 40 50]] 
Y with shape (2, 3) 
[[0 1 2] 
 [3 4 5]] 
X elementwise product with Y 
[[  0  10  40] 
 [ 90 160 250]] 

print(f'X with shape {X.shape}\n{X}')
print(f'Y with shape {Y.shape}\n{Y}')
try:
    Z = X.T * Y  # Fails since matrix shapes don't match and cannot broadca
except ValueError as e:
    print('Operation failed! Message below:')
    print(e)

print(f'X with shape {X.shape}\n{X}')
print(f'Y with shape {Y.shape}\n{Y}')
Zelem = X * Y  # Elementwise / Hadamard product of two matrices
print(f'X elementwise product with Y\n{Zelem}')
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Identity matrix
Generalizes the concept of the scalar 1 to a matrix form
Multiplying by the identity matrix does not change the vector/matrix
Formally, In ∈ Rn× n, and ∀X ∈ Rn×m, InX = X
Structure is ones on the diagonal, zero everywhere else:

In =

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

np.eye  function to create identity

[ ]

AB 
[[ 90 120 150] 
 [120 170 220] 
 [150 220 290]] 
BA 
[[ 50 140] 
 [140 500]] 
(AB)^T 
[[ 90 120 150] 
 [120 170 220] 
 [150 220 290]] 
B^T A^T 
[[ 90 120 150] 
 [120 170 220] 
 [150 220 290]] 

A = X.T
B = Y
print('AB')
print(np.matmul(A, B))
print('BA')
print(np.matmul(B, A))
print('(AB)^T')
print(np.matmul(A, B).T)
print('B^T A^T')
print(np.matmul(B.T, A.T))
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The inverse of square matrix A ∈ Rn× n is denoted as A −1 and defined as:

A −1A = I

The "right" inverse is similar and is equal to the left inverse:

AA −1 = I

Generalizes the concept of inverse x and 
1
x

Does NOT always exist, similar to how the inverse of x only exists if x ≠ 0
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Summing or averaging along rows or columns in 
numpy

Many times we want to compute the sum or mean along rows or columns of a matrix
We can do this using np.sum  (or np.mean ) or directly call the method of a numpy array
A.sum  or A.mean

NOTE: The axis  argument is very important.
axis=None  is full sum/mean of all entries in matrix/array

[[1. 0. 0.] 
 [0. 1. 0.] 
 [0. 0. 1.]] 
[-0.43588323  1.27047516 -1.07495702] 
[-0.43588323  1.27047516 -1.07495702] 

[[100.  50.] 
 [ 20. 100.]] 
[[ 0.01111111 -0.00555556] 
 [-0.00222222  0.01111111]] 
A^{-1} A =  
[[1.00000000e+00 0.00000000e+00] 
 [2.77555756e-17 1.00000000e+00]] 
A A^{-1} =  
[[1.00000000e+00 0.00000000e+00] 
 [2.77555756e-17 1.00000000e+00]] 

I3 = np.eye(3)
print(I3)
x = np.random.randn(3)
print(x)
print(np.dot(I3, x))

A = 100 * np.array([[1, 0.5], [0.2, 1]])
print(A)
Ainv = np.linalg.inv(A)
print(Ainv)
print('A^{-1} A = ')
print(np.dot(Ainv, A))
print('A A^{-1} = ')
print(np.dot(A, Ainv))



axis=0  is sum along the rows
axis=1  is sum along the columns
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Singular matrices
Informally, singular matrices are matrices that do not have an inverse (similar to the idea that 0
does not have an inverse)
Consider the 1D equation ax = b

Usually we can solve for x by multiplying both sides by 1/a
But what if a = 0?
What are the solutions to the equation?

Called "singular" because a random matrix is unlikely to be singular, just like choosing a
random number is unlikely to be 0.

A 
[[0 1 2] 
 [3 4 5]] 
np.sum(A) 
15 
Row sum: np.sum(A, axis=0) 
[3 5 7] 
Column sum: np.sum(A, axis=1) 
[ 3 12] 

A 
[[0 1 2] 
 [3 4 5]] 
np.mean(A) 
2.5 
Row mean: np.mean(A, axis=0) 
[1.5 2.5 3.5] 
Column mean: np.mean(A, axis=1) 
[1. 4.] 

A = np.arange(6).reshape(2,3)
print(f'A\n{A}')
print(f'np.sum(A)\n{np.sum(A)}')
print(f'Row sum: np.sum(A, axis=0)\n{np.sum(A, axis=0)}')
print(f'Column sum: np.sum(A, axis=1)\n{np.sum(A, axis=1)}')

A = np.arange(6).reshape(2,3)
print(f'A\n{A}')
print(f'np.mean(A)\n{np.mean(A)}')
print(f'Row mean: np.mean(A, axis=0)\n{np.mean(A, axis=0)}')
print(f'Column mean: np.mean(A, axis=1)\n{np.mean(A, axis=1)}')
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A =  
[[0 0] 
 [0 0]] 
Singular matrix 
 
A =  
[[1. 0. 0.] 
 [0. 1. 0.] 
 [0. 0. 1.]] 
Not singular! 
 
A =  
[[1 1] 
 [1 1]] 
Singular matrix 
 
A =  
[[ 1 10] 
 [ 1 10]] 
Singular matrix 
 
A =  
[[ 2 20] 
 [ 4 40]] 
Singular matrix 
 
A =  
[[ 2 20] 
 [40  4]] 
Not singular! 
 

from numpy.linalg import LinAlgError
def try_inv(A):
    print('A = ')
    print(np.array(A))
    try: 
        np.linalg.inv(A)
    except LinAlgError as e:
        print(e)
    else:
        print('Not singular!')
    print()
        
try_inv([[0, 0], [0, 0]])
try_inv(np.eye(3))
try_inv([[1, 1], [1, 1]])
try_inv([[1, 10], [1, 10]])
try_inv([[2, 20], [4, 40]])
try_inv([[2, 20], [40, 4]])
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A =  
[[-0.98488252  0.30120466] 
 [-0.81247813  1.83108882]] 
Not singular! 
 
A =  
[[-1.62972196 -1.29554373] 
 [ 0.40803626 -0.17574461]] 
Not singular! 
 
A =  
[[-0.29187122 -0.31441566] 
 [-0.88843359 -0.46143531]] 
Not singular! 
 
A =  
[[-0.42821856  0.73764165] 
 [ 0.04247994 -0.61301516]] 
Not singular! 
 
A =  
[[ 0.74635315  1.13370144] 
 [-0.88846979 -0.74826847]] 
Not singular! 
 
A =  
[[ 0.34401182  1.17651912] 
 [-0.73487351 -0.3446669 ]] 
Not singular! 
 
A =  
[[-1.138562    0.28076968] 
 [-1.01990324  0.62218771]] 
Not singular! 
 
A =  
[[-0.10438993 -1.92831209] 
 [-0.6782082   1.25382139]] 
Not singular! 
 
A =  
[[-0.20612421 -0.07080544] 
 [-0.5240981  -0.471993  ]] 
Not singular! 
 
A =  
[[ 1.25702837 -1.47350687] 
 [ 1.34346636  2.02330837]] 
Not singular! 
 

# Random matrix is very unlikely to be 0
for j in range(10):
    try_inv(np.random.randn(2, 2))



System of equations in matrix form
Example:

2x + 3y = 6
4x + 9y = 15.

Solution is x =
3
2 , y = 1

More general example:

a1 , 1x1 + a1 , 2x2 + a1 , 3x3 = b1
a2 , 1x1 + a2 , 2x2 + a2 , 3x3 = b2
a3 , 1x1 + a3 , 2x2 + a3 , 3x3 = b3

is equivalent to:

Ax = b

where A ∈ R3 , 3, x ∈ R3 and b ∈ R3.


