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• Measure of likelihood that an event occurs

• A number between 0 and 1

• The higher the number, the more likely the 
event occurs

• A probability of 0 means the event never 
occurs, and a probability of 1 means the 
event always occurs

• Example: What is the probability of the event 
“heads” when flipping a coin? 
P(H) =

what is a probability?



• Conduct an experiment, which results in an 
outcome

• Each outcome has a probability between 0 and 1

• Set of all possible outcomes is the sample 
space 

• Sum of probability of all outcomes is 1

• An event is a set of possible outcomes

• Probability of event is the sum of the probabilities 
of individual outcomes

Ω

elements of a probability model

Ω = {1,...,5}

P(3) = 3/8

P({1,3,5}) = 5/8
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Probability

Here is a picture about probability:

I You do an experiment.

I You collect outcomes, a point in the sample space.

I A sub-collection of outcomes is called an event.

I Then you assign di↵erent events to probability.
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visualization



• Lots of different interpretations

• All outcomes  are equally probable (e.g., roll a die, 
each number has the same chance). Probability of an 
event is number of outcomes in event divided by total 
number of outcomes.

• Frequentist: Repeat an experiment over and over 
again, probability of an event is fraction of the time the 
event happens during the experiment.

• Bayesian: Probability is a reflection of your belief 
about the likelihood of something happening (e.g., 
based on prior knowledge).

x

what does probability mean?



random variables
• A random variable  is a function that assigns an outcome to a number

• A way of letting us treat outcomes, which may not be numbers, in a mathematical 
way

• E.g., in flipping a coin,  could map Heads to 0 and Tails to 1

• A random variable has a probability distribution which tells us the probability of its 
values

•  E.g., in flipping a coin, 

• Informal intuition: The random variable is the horizontal value on the histogram, with 
the height being the probability

• Random variables can be continuous or discrete

X

X

P[X = 0] = 0.5, P[X = 1] = 0.5



probability density function
• One loose definition: A histogram when …

• (i) the number of samples goes to infinity

• (ii) the bin width approaches zero

• When this happens, the estimate  approaches  of the 
population

• More formal definition:  is the probability density 
function (PDF) for  if 

         

•  is a continuous random variable

̂pk pk

fX(x)
X

P[a ≤ X ≤ b] = ∫
b

a
fX(x) dx

X



cumulative distribution function
• The cumulative distribution function (CDF) of a random variable  

is

 

X

FX(x) = P[X ≤ x]
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probability mass/density function
• If  is a discrete random variable, it has a probability 

mass function (PMF). The PMF is defined directly 
from the probabilities of events (essentially a histogram 
with bars interpreted as frequencies): 
                

• If  is a continuous random variable, it has a PDF, which 
is a little tricker to define since the probability of any 
single number is actually 0.  As a result, we can also 
define the PDF in terms of the CDF: 
 

                

X

fX(x) = P[X = x]

X

fX(x) =
dFX(x)

dx

fX(x)



CDF from PDF/data
• The continuous CDF  in terms of the PDF : 




• The discrete CDF  in terms of the PMF : 
 

 

where  are possible discrete values (e.g., 0, 1, 2, …)


• For a dataset of  points, we can define a discrete empirical CDF: 
 

 

where  are the samples (e.g., height in feet 5.8, 6.1, 5.1, …)


• Note that each of these functions are defined for all values of , even 
though the random variables may be continuous or discrete!

FX(x) fX(x)

FX(x) = P[X ≤ x] = P[−∞ ≤ X ≤ x] = ∫
x

−∞
fX(t)dt

FX(x) fX(x) = P[X = x]

FX(x) = P[X ≤ x] = P[−∞ ≤ X ≤ x] = ∑
xi≤x

fX(xi) = ∑
xi≤x

P[X = xi]

xi

n

FX(x) = P[X ≤ x] = P[−∞ ≤ X ≤ x] = ∑
xi≤x

fX(xi) = ∑
xi≤x

1
n

xi

x



picking a distribution
• Common problem in data science

• You have (empirical) data, and you need to 
choose how to (analytically) model it

• What distribution is your data coming 
from?

• What distribution is most likely to 
predict future samples?

• Important choice because distribution 
often determines how your model works 



qq plots
• Basic idea: Compare the empirical CDF of your data 

to the CDF of a proposed model  

• Use quantiles to do this (inverse of CDF function)

• Quantile  is the value of  such that 

• Sometimes expressed in terms of percentiles, 
e.g., scoring in the 95th percentile on a test

• For each datapoint in your sample, find:

• The quantile with respect to the dataset, 

• The quantile with respect to the model, 

• Add each point  to a scatter plot

• If the distributions are similar, the quartiles will 
appear to form the line 

q x P[X ≤ x] = q

qD

qM

(qM, qD)

y = x



qq plots
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QQ-Plot
I If straight line, then actual fits ideal

I That means your candidate model is good
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QQ-Plot
Bad fit:

This type of plot is called the QQ-plot.
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• See scipy.stats.probplot



bernoulli distribution
• Two states:  or 

• Think flipping a coin, or a single “bit” of 
information

• But it doesn’t have to be a fair coin!

• PMF: 

       

• Here,  is the probability of 
“success” (i.e., )

X = 0 X = 1

P[X = x] = {1 − p x = 0
p x = 1

p ∈ [0,1]
X = 1

fX(x)



binomial distribution
• Bernoulli trials repeated  times

• Think flipping a coin  times and counting 
the number of heads, or transmitting  
bits and counting the number of 1’s

• PMF: 

       

• Here,  is the binomial 

coefficient

n

n
n

P[X = x] = (n
x) px(1 − p)n−x

(n
x) =

n!
x!(n − x)! x

f x(
x)



discrete pmf example 
We are interested in modeling whether a machine produces outputs in 
spec or not. 

We collect 200 samples and find 20 are out of spec. 

Model the next output as a random variable.

 What is its pmf?



discrete pmf example 
Let  denote “out of spec” and  denote “in spec”.

 is a Bernoulli random variable, and from the data, we can estimate 
 as the probability of success.

Hence,

X = 0 X = 1

X
p = 180/200 = 0.9

fX(x) = {0.1, x = 0
0.9, x = 1

FX(x) =
0, x < 0
0.1, 0 ≤ x < 1
1, x ≥ 1



gaussian distribution
• Also called the normal distribution, or the 

bell curve 

• Very common distribution in natural 
processes

• The sum of many independent processes is 
often normal (more on this later)

• PDF: 

          

• Its parameters are the mean  and the 
variance 

𝒩(x |μ, σ2) =
1

2πσ2
e− (x − μ)2

2σ2

μ
σ2

𝒩
(x

| μ
,σ

2 )



gaussian distribution
• The PDF of the normal distribution has 

several useful properties

• The 3-sigma rule

• ~68% of points within  of 

• ~95% of points within  of 

• ~99.7% of points within  of 

• Useful in constructing confidence 
intervals and hypothesis testing (more 
on this later)

±σ μ
±2σ μ

±3σ μ



exponential distribution
• Useful for modeling decay processes, inter-

arrival times, and occurrences of events

• Probability of a radioactive item decaying

• Time between arrival of visitors to a website, 
or customers to a store

• PDF: 

             

•  is the rate parameter

fX(x) = {λe−λx x ≥ 0
0 x < 0

λ > 0

f X
(x

)
F X

(x
)



continuous example
We are told that the time between visits to a website, measured in 
minutes, is exponentially distributed with a rate parameter . 

1)  Find the CDF of this random variable. 

2)  What is the probability that that there is more than 0.5 minutes 
between visits?

λ = 2



continuous example
The random variable  has the following PDF: 

       

We can find the CDF as: 
 

       

The probability of  is: 
 
       

X

fX(x) = {0, x < 0
2e−2x, x ≥ 0

FX(x) = ∫
x

−∞
fX(t)dt = ∫

x

0
2e−2tdt = − e−2t

x

0
= {0, x < 0

1 − e−2x, x ≥ 0

X > 0.5

P[X > 0.5] = 1 − FX(0.5) = 1 − (1 − e−2(0.5)) = e−1 = 0.368



many more!
• Geometric: “How many times do I need to flip a coin to get heads?”

• Uniform: Every event in an interval is equally likely

• Student’s t: Behavior of normal distribution with fewer samples

• Poisson: Discrete version of the exponential distribution

• …

• See more here: https://docs.scipy.org/doc/numpy-1.14.1/reference/
routines.random.html

https://docs.scipy.org/doc/numpy-1.14.1/reference/routines.random.html
https://docs.scipy.org/doc/numpy-1.14.1/reference/routines.random.html
https://docs.scipy.org/doc/numpy-1.14.1/reference/routines.random.html

