ECE 20875
Python for Data Science
David Inouye and Qiang Qiu
(Adapted from material developed by Profs. Milind Kulkarni, Stanley Chan, Chris Brinton, David Inouye)

regression
Inference

- **Inference** is one of the basic problems that we want to solve in data science.

- Given a set of data that we know some facts about, what new conclusions can we draw, and with what certainty?

- We will investigate several approaches to drawing conclusions from given sets of data.

- Over the next few lectures: Making **predictions** about new data points given existing data using **linear regression**.
linear regression

• Basic modeling problem: I want to identify a relationship between …

• explanatory variables (i.e., the “inputs”, often referred to as the features of a data point), and

• a target variable (i.e., some “output” quantity that we want to estimate)

• Can we learn what this relationship is?

• If we have a model for this relationship, we can use it to predict the target variable for new data points
linear regression

• Basic modeling problem: I want to identify a relationship between …

• explanatory variables (i.e., the “inputs”, often referred to as the features of a data point), and

• a target variable (i.e., some “output” quantity that we want to estimate)

• Can we learn what this relationship is?

• If we have a model for this relationship, we can use it to predict the target variable for new data points
linear regression

• Can we learn the model from the data?

• Note that the model does not match the data exactly!
 • A model is (at best) a simplification of the real-world relationship

• What makes a good model?
 • Minimizes **observed error**: How far the model deviates from the observed data
 • Maximizes **generalizability**: How well the model is expected to hold up to unseen data
linear regression

• Can we learn the model from the data?

• Note that the model does not match the data exactly!
 • A model is (at best) a simplification of the real-world relationship

• What makes a good model?
 • Minimizes observed error: How far the model deviates from the observed data
 • Maximizes generalizability: How well the model is expected to hold up to unseen data
Simple linear regression model

- The simple linear regression model has a single explanatory variable:
 \[y_n = ax_n + b + \epsilon_n, \quad n = 1, \ldots, N \]

- \(y_n \) is the measured value of the target variable for the \(n \)th data point

- \(ax_n + b \) is the estimated value of the target, based on the explanatory \(x_n \)

- Each \(y_n \) is associated with a model prediction component \(ax_n + b \) plus some error term \(\epsilon_n \)

- How do we minimize this error?
minimizing error

- The **mean squared error** (MSE) for simple linear regression is

\[E(a, b) = \frac{1}{N} \sum_{n=1}^{N} (y_n - (ax_n + b))^2 \]

- Common error metric: We looked at already when we studied the choice of histogram bin widths

- We want to minimize \(E \), denoted: \(\min_{a,b} E(a, b) \)

- With two **model parameters** \(a \) and \(b \), this is reasonably easy to carry out by hand

- The square makes it easy to take the derivative
minimizing error: derivation

• Set the derivatives with respect to a and b to zero:

$$\frac{dE}{da} = \frac{1}{N} \sum_{n=1}^{N} - 2x_n \left(y_n - (ax_n + b) \right) = 0$$

$$\frac{dE}{db} = \frac{1}{N} \sum_{n=1}^{N} - 2 \left(y_n - (ax_n + b) \right) = 0$$
minimizing error: derivation

• Set the derivatives with respect to a and b to zero:

$$
\frac{dE}{da} = \frac{1}{N} \sum_{n=1}^{N} -2x_n (y_n - (ax_n + b)) = 0
$$

$$
\frac{dE}{db} = \frac{1}{N} \sum_{n=1}^{N} -2 (y_n - (ax_n + b)) = 0
$$

• Focusing first on the second equation, we have:

$$
\frac{-\sum_{n=1}^{N} y_n}{N} + a \frac{\sum_{n=1}^{N} x_n}{N} + b \frac{\sum_{n=1}^{N} 1}{N} = 0, \text{ or }
$$

$$
b = \frac{\sum_{n=1}^{N} y_n}{N} - a \frac{\sum_{n=1}^{N} x_n}{N} = \bar{y} - a \bar{x}
$$
minimizing error: derivation

- Set the derivatives with respect to a and b to zero:

$$\frac{dE}{da} = \frac{1}{N} \sum_{n=1}^{N} -2x_n (y_n - (ax_n + b)) = 0$$

$$\frac{dE}{db} = \frac{1}{N} \sum_{n=1}^{N} -2 (y_n - (ax_n + b)) = 0$$

- Focusing first on the second equation, we have:

$$-\frac{\sum_{n=1}^{N} x_n y_n}{N} + a \frac{\sum_{n=1}^{N} x_n^2}{N} + b \frac{\sum_{n=1}^{N} x_n}{N} = 0,$$

so

$$a \frac{\sum_{n=1}^{N} x_n^2}{N} = \frac{\sum_{n=1}^{N} x_n y_n}{N} - b \frac{\sum_{n=1}^{N} x_n}{N} = \frac{\sum_{n=1}^{N} x_n y_n}{N} - b \bar{x}$$
minimizing error: derivation

• Set the derivatives with respect to \(a \) and \(b \) to zero:

\[
\frac{dE}{da} = \frac{1}{N} \sum_{n=1}^{N} -2x_n \left(y_n - (ax_n + b) \right) = 0
\]

\[
\frac{dE}{db} = \frac{1}{N} \sum_{n=1}^{N} -2 \left(y_n - (ax_n + b) \right) = 0
\]

• Focusing first on the second equation, we have:

\[
- \frac{\sum_{n=1}^{N} y_n}{N} + a \frac{\sum_{n=1}^{N} x_n}{N} + b \frac{\sum_{n=1}^{N} 1}{N} = 0, \quad \text{or}
\]

\[
b = \frac{\sum_{n=1}^{N} y_n}{N} - a \frac{\sum_{n=1}^{N} x_n}{N} = \bar{y} - a\bar{x}
\]

• As for the first equation,

\[
- \frac{\sum_{n=1}^{N} x_n y_n}{N} + a \frac{\sum_{n=1}^{N} x_n^2}{N} + b \frac{\sum_{n=1}^{N} x_n}{N} = 0, \quad \text{so}
\]

\[
\frac{\sum_{n=1}^{N} x_n^2}{N} = \frac{\sum_{n=1}^{N} x_n y_n}{N} - b\bar{x}
\]

• Substituting our expression for \(b \), we have:

\[
a \left(\frac{\sum_{n=1}^{N} x_n^2}{N} - \bar{x}^2 \right) = \frac{\sum_{n=1}^{N} x_n y_n}{N} - \bar{y}\bar{x}
\]
minimizing error: formulas

• Isolating a on the left hand side and simplifying, we get:

$$a = \frac{\sum_{n=1}^{N} x_n y_n - N \bar{y} \bar{x}}{\sum_{n=1}^{N} x_n^2 - N \bar{x}^2}$$

• Here, \bar{x} and \bar{y} are the averages of the x_n and y_n, respectively

• We can then use a to solve for b according to:

$$b = \bar{y} - a \bar{x}$$

• And then our linear regression predictor for a new datapoint i is

$$y_i = ax_i + b$$
minimizing error: formulas

• Isolating a on the left hand side and simplifying, we get:

$$a = \frac{\sum_{n=1}^{N} x_n y_n - N \bar{y} \bar{x}}{\sum_{n=1}^{N} x_n^2 - N \bar{x}^2}$$

• Here, \bar{x} and \bar{y} are the averages of the x_n and y_n, respectively

• We can then use a to solve for b according to

$$b = \bar{y} - a \bar{x}$$

• And then our linear regression predictor for a new datapoint i is

$$y_i = ax_i + b$$

• What do we do if there is more than one explanatory variable?

• To generalize to this case, it is more convenient to work with matrix equations
matrix algebra review

• Let’s say $\mathbf{x} = (x_1 \ x_2 \ \cdots \ x_n)^T$ and $\mathbf{y} = (y_1 \ y_2 \ \cdots \ y_n)^T$ are both n-dimensional vectors. Then

$\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$

is the inner product or dot product of \mathbf{x} and \mathbf{y}, which is the multiplication of a $1 \times n$ and $n \times 1$ vector and results in a scalar.

• For example, suppose $\mathbf{x} = (3 \ 4 \ 5)^T$, $\mathbf{y} = (1 \ 0 \ 2)^T$. Then:

$\mathbf{x}^T \mathbf{y} = (3 \ 4 \ 5) \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 3 \times 1 + 4 \times 0 + 5 \times 2 = 13$

• The L2-norm of a vector $\mathbf{x} = (x_1 \ x_2 \ \cdots \ x_n)^T$ is a generalization of the Pythagorean theorem for finding the “length”:

$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$
matrix algebra review

• More generally, define two $m \times n$ matrices:

$$X = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{mn}
\end{bmatrix}, \quad Y = \begin{bmatrix}
y_{11} & y_{12} & \cdots & y_{1n} \\
y_{21} & y_{22} & \cdots & y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m1} & y_{m2} & \cdots & y_{mn}
\end{bmatrix}$$

Then the matrix multiplication of X^T and Y, which results in an $n \times n$ matrix, is:

$$X^T Y = \begin{bmatrix}
x_1 & x_2 & \cdots & x_n
\end{bmatrix}
\begin{bmatrix}
y_1 & y_2 & \cdots & y_n
\end{bmatrix}$$

• For example, with A and B defined below, we get:

$$A = \begin{bmatrix}
-1 & 0 & 1 \\
0 & 2 & 3
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 2 & 3 \\
3 & 0 & 1
\end{bmatrix} \quad \rightarrow \quad A^T B = \begin{bmatrix}
-1 & 0 & \cdot \\
0 & 2 & \cdot \\
\cdot & \cdot & \cdot
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
3 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
-1 & -2 & -3 \\
6 & 0 & 2 \\
10 & 2 & 6
\end{bmatrix}$$
matrix algebra review

- If \(X \) has dimension \(a \times b \), and \(Y \) has dimension \(c \times d \), then the matrix product \(XY \) is only possible if \(b = c \) (i.e., the inner dimensions match), which will have dimension \(a \times d \) (outer dimensions).

- If \(X \) is a square matrix (i.e., has dimension \(n \times n \)), then its inverse is \(X^{-1} \) (if it exists), and:

\[
X^{-1}X = XX^{-1} = I,
\]

where \(I = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 \end{bmatrix} \)

is the \(n \times n \) identity matrix.

- For example, with \(A \) and \(B \) defined as below, we can verify \(B = A^{-1} \), since \(AB = I \):

\[
A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0.2 & 0.2 & 0 \\ -0.2 & 0.3 & 1 \\ 0.2 & -0.3 & 0 \end{bmatrix}, \quad AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]
• But how do we perform matrix manipulations, like taking inverses, on large matrices in general?

• In Python, we can use the numpy library to do matrix operations

```python
import numpy as np

np.array(A)  //Convert list to numpy array
np.matmul(A,B)  //Matrix multiplication (or A@B)
np.linalg.inv(A)  //Matrix inverse
A.sum(axis=0)  //Sum over rows of matrix
```

• See https://scipy-lectures.org/intro/numpy/operations.html for more examples, as well as the notebook
Now, back to regression.

For simple linear regression, if we define

\[
X = \begin{bmatrix}
x_1 & 1 \\
x_2 & 1 \\
\vdots & \vdots \\
x_N & 1
\end{bmatrix}, \quad \beta = \begin{bmatrix} a \\ b \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}
\]

then we can write the equations for all data points compactly using the following matrix equation:

\[
y = X\beta + \epsilon
\]

The multivariable linear regression model with \(M \) explanatory variables is

\[
y_n = a_1 x_{n,1} + a_2 x_{n,2} + \cdots + a_M x_{n,M} + b + \epsilon_n, \quad n = 1, \ldots, N
\]

In this case, we define

\[
X = \begin{bmatrix}
x_{1,1} & x_{1,2} & \cdots & x_{1,M} & 1 \\
x_{2,1} & x_{2,2} & \cdots & x_{2,M} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{N,1} & x_{N,2} & \cdots & x_{N,M} & 1
\end{bmatrix}, \quad \beta = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_M \\ b \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}
\]

where \(X \) is the feature matrix. Then, as before, we can write

\[
y = X\beta + \epsilon
\]
least squares equations

• With this matrix notation, we can write our original optimization for minimizing MSE as:

$$
\min_{\beta} \frac{1}{N} \sum_{n=1}^{N} (y_n - x_n^T \beta)^2
$$

• Or, equivalently, this can be written using the vector norm:

$$
\min_{\beta} \frac{1}{N} \|y - X\beta\|_2^2
$$

• Similar to 1D case, we can take the gradient (multidimensional derivative) and set to 0 (i.e., the vector of zeros) to find minimum:

$$
\nabla \left((1/N)\|y - X\beta\|_2^2\right) = \left(\frac{2}{N}\right)X^T X \beta - \left(\frac{2}{N}\right)X^T y = 0
$$

• This yields the least squares equations for solving for β:

$$
X^T X \beta = X^T y
$$
solving for β

- If X^TX is invertible, we can take a matrix inverse to solve for the model parameters β:
 \[\beta = (X^TX)^{-1}X^Ty \]

- But X^TX is not always invertible
 - The inverse exists if and only if the columns of X are **linearly independent** of one another
 - This means that we cannot have the case where one column can be written as a linear combination of the others

- What does it mean when X^TX is not invertible?
 - Infinitely many possible solutions
 - We typically choose the one where $\|\beta\|$ is smallest. Why?
Suppose we collect five data points consisting of two features \(x_1, x_2 \) and a target variable \(y \) in the form \((x_1, x_2, y)\): \((1, 2, 10), (-3, 6, 0), (0, 0, 3), (1, -1, 4), (5, -2, 20)\). We want to fit a linear regression model to this dataset.

What are the least squares equations?

What is the resulting model?

What would be the prediction for a new datapoint with \(x_1 = -1, x_2 = 1 \)?
The model we want to fit is \(\hat{y} = a_1 x_1 + a_2 x_2 + b \), where \(\beta = (a_1 \ a_2 \ b)^T \) is the parameter vector.

The feature matrix \(X \), target vector \(y \), and least squares equations are:

\[
X = \begin{bmatrix}
1 & 2 & 1 \\
-3 & 6 & 1 \\
0 & 0 & 1 \\
1 & -1 & 1 \\
5 & -2 & 1 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
10 \\
0 \\
3 \\
4 \\
20 \\
\end{bmatrix},
\]

\[
\begin{bmatrix}
1 & -3 & 0 & 1 & 5 \\
2 & 6 & 0 & -1 & -2 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix}
1 & 2 & 1 \\
-3 & 6 & 1 \\
0 & 0 & 1 \\
1 & -1 & 1 \\
5 & -2 & 1 \\
\end{bmatrix} \beta = \begin{bmatrix}
1 & -3 & 0 & 1 & 5 \\
2 & 6 & 0 & -1 & -2 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix}
10 \\
0 \\
3 \\
4 \\
20 \\
\end{bmatrix}
\]

\[
X^T X \beta = X^T y
\]
solution: model and test prediction

Using the numpy commands for inverse, transpose, and multiplication, we compute the solution: \(\beta = (X^T X)^{-1} X^T y \)

\[
\beta = (4.2308, 1.7538, 2.2615)^T
\]

Which means that our model is

\[
\hat{y} = 4.2308x_1 + 1.7538x_2 + 2.2615
\]

And the prediction for \(x_1 = -1, x_2 = 1 \) is

\[
\hat{y} = 4.2308 \cdot -1 + 1.7538 \cdot 1 + 2.2615 = -0.2154
\]
interpreting results

• How should we interpret the results of linear regression?

• Recall multi-feature model, e.g.,
 \[y_n = a_1 x_{n,1} + a_2 x_{n,2} + b \]

• If one feature weight (e.g., \(a_1\)) is higher than another (e.g., \(a_2\)), this can indicate that this feature is more important than the other (contributes more to the value of \(y\))

• Need to be careful, though! If different features have different scales, then weights will naturally be different!

• Normalization is useful as it standardizes the feature ranges

Here, \(x_1\) has a range of 8, while \(x_2\) only has a range of 2
normalization for interpretation

• **Problem:** Suppose I fit a linear regression model and get

\[\hat{y} = 10x_1 + 100x_2 + 5 \]

• Does this mean that \(x_2 \) has a bigger impact on \(y \) than \(x_1 \)?

• Not necessarily, because we have said nothing about the ranges of \(x_1 \) and \(x_2 \) that resulted in \(a_1 = 10 \) and \(a_2 = 100 \).

• **One solution:** **Normalize** the data before doing linear regression so that coefficients are comparable over a consistent range.
standard normalization

• For every feature column, do the following to make them all have a mean of 0 and standard deviation of 1:

 1. *Center values*: Subtract the column average from each feature sample
 • Useful to eliminate any bias contained in the features
 2. *Scale values*: Divide each feature sample by the column standard deviation
 • Re-scales features so that each is expressed in new units: standard deviations from the mean (similar to how we calculate z-scores)

• Mathematically, we are defining the following operation for each feature column \mathbf{x}_m:

$$\tilde{x}_m = \frac{x_m - \bar{x}_m}{s_m},$$

where \bar{x}_m and s_m are the sample mean and standard deviation of feature m.
How good is the fit of the regression to the dataset?

To answer this, one possibility is using the MSE.

Another commonly used quantity is the coefficient of determination, called r^2

$$r^2 = 1 - \frac{\sum_{n=1}^{N} (y_n - \hat{y}_n)^2}{\sum_{n=1}^{N} (y_n - \bar{y})^2} = 1 - \frac{MSE}{\sigma_Y^2}$$

- y_n: Measured value, \hat{y}_n: Predicted value
- \bar{y}: Mean measured value, σ_Y^2: Variance of measured value

r^2 gives the fraction of variance in the data that is explained by the model.

Typically between 0 (bad, no better than horizontal line) and 1 (perfect fit).

Sometimes preferred to MSE in regression problems for this reason.
using your model after fitting

- After fitting a linear regression model, you can estimate (or predict) the target y of new data points using your model
 - New data point: (x_1, x_2, \ldots)
 - Prediction: $\hat{y} = a_1 x_1 + a_2 x_2 + \cdots + b$
 - How good is the prediction?
 - Squared error between \hat{y} and y (once it is known)
 - MSE or r^2 over a set of new data points
 - When using the model, make sure to take into account any normalization that was used (i.e., normalize new data points before inputting them, “un-normalize” the \hat{y} you get back)
linear regression in python

- You can solve the least squares equations directly using numpy.
- Given how common linear regression is, several variants are built in to the sklearn (scikit learn) library directly:

```python
from sklearn import linear_model, from sklearn.metrics import mean_squared_error, r2_score

regr = linear_model.LinearRegression(fit_intercept=True)  # Define linear regression object

regr.fit(X_train,y_train)  # Fit model to training set
regr.coef_  # View coefficients \( (a_1, \ldots, a_M) \) of trained model
regr.intercept_  # View intercept \( (b) \) of trained model
y_pred = regr.predict(X_test)  # Apply model to test set
r2_score(y_true,y_pred)  # r2 score between true and predicted
```
more interpretation

• Is a feature significant?
 • Just because a feature is used in a model doesn’t mean it is important in predicting the value of the output
 • But the model will try to account for the feature anyway!

• Can perform a hypothesis test (see previous lectures):
 • *Null hypothesis* H_0: Coefficient a_m is 0 (feature has no predictivity, y does not depend on x_m)
 • *Alternative hypothesis* H_1: Coefficient a_m is not 0 (feature has predictivity, y does depend on x_m)
hypothesis test for regression

• Test statistic is always: \(\frac{\hat{a}_m - a_m}{SE_{a_m}} \) / standard error

\[
\frac{\hat{a}_m - a_m}{SE_{a_m}} = \frac{\hat{a}_m}{SE_{a_m}}
\]

• What is the standard error for a regression coefficient \(a_m \)?

\[
SE_{a_m} = \sqrt{\frac{\sum_{n=1}^{N} (y_n - \hat{y}_n)^2}{N - 2}} \sqrt{\sum_{n=1}^{N} (x_{n,m} - \bar{x}_m)^2}
\]

• For a \(z \)-test, find \(p \)-value of \(SE_{a_m} \) against the \(z \)-distribution

• For a \(t \)-test, find \(p \)-value against a \(t \)-distribution with \(N - k - 1 \) degrees of freedom, where \(k \) is the number of features

\(\hat{y}_n \): Measured value, \(x_{n,m} \): Feature value
\(\hat{y}_n \): Predicted value, \(\bar{x}_m \): Feature average
a linear model may be wrong

- In these graphs, all 4 datasets have the same ...
 - linear regression line
 - coefficient of determination
 - mean and variance of both x and y
- Yet clearly, the relationship between x and y is different in each case
- It is important to visualize the results, and possibly try non-linear models!
what about non-linear?

• A common (and understandable) misconception is that linear regression can only find linear relationships

• The “linear” part refers to the parameter vector β, not the input features in X

• We can readily take nonlinear functions of our features

• For example, suppose we want to fit a quadratic model:

$$y_n = a_1(x_n)^2 + a_2x_n + b$$

• We create a “synthesized” feature matrix that has the quadratic form:

$$X = \begin{bmatrix} (x_1)^2 & x_1 & 1 \\ (x_2)^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ (x_N)^2 & x_N & 1 \end{bmatrix} \quad \beta = \begin{bmatrix} a_1 \\ a_2 \\ b \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
more and more complexity

• If we use a higher degree d of polynomials, we can reduce MSE:

- $d = 0$
- $d = 1$
- $d = 2$
- $d = 4$
- $d = 8$
- $d = 16$

• But, is this a good thing to do?
overfitting

• If our goal was just to minimize error on the existing dataset, we’d keep adding features (e.g., increasing the degree d of a polynomial)

• But this sacrifices the generalizability of the model

• An overfitted model is one which contains too many parameters than can be justified by the data

 • High r^2 and low MSE on training data, but low r^2 and high MSE on testing data

• We can contrast this with underfitting, where we don’t have enough parameters to drive down MSE on either training or testing data
• When we have a lot of features, we can use regularization, a class of techniques for mitigating overfitting by penalizing non-zero model coefficients

• The general expression we work with in regularization is:

$$\text{minimize } (\text{model error}) + \lambda (\text{coefficient weights})$$

• $\lambda \geq 0$ is the regularization parameter

 • Higher λ: Minimizing model parameters becomes more important

 • Lower λ: Minimizing model error becomes more important

• Several different regularization techniques: Lasso, Ridge, Elastic-Net, …
ridge regression

• In **ridge regression**, the regularization term is the sum of squares of the coefficients:

\[
\min_{\beta} \|X\beta - y\|_2^2 + \lambda \|\beta\|_2^2
\]

• This makes it easy to solve in matrix form as:

\[
\beta^* = (X^TX + \lambda I)^{-1}X^Ty
\]

• In Python (where \(\alpha \) is the regularization parameter):

```python
from sklearn import linear_model
reg = linear_model.Ridge(alpha=0.1, fit_intercept=True)
```
regularization can alleviate overfitting

- Polynomial of degree $d = 10$, with different amounts of regularization:

 - A higher value of λ has a "smoothing" effect on the model
evaluating predictive performance

• Descriptive and diagnostic analysis (classical statistics, data mining)
 • Focus: Understand and interpret statistical relationships in observed dataset
 • Evaluation: e.g., MSE or r^2 on training data (data used to fit the model)

• Predictive and prescriptive analysis (machine learning)
 • Focus: Predict target value for new or future unseen data
 • Evaluation: e.g., MSE or r^2 on test data (data not used to fit the model)
why evaluate on test data?

• Analogy to class
 • **Training data** is like homeworks, sample problems and sample exams
 • **Testing data** is like the real exam

• If we train and evaluate on the same data, the model may not generalize well

• Reasons for computing performance on *test data* (the standard ML approach):
 • **Model evaluation**: Quantify the model’s predictive performance *if deployed*
 • e.g., describing the model and its business implications to the CEO
 • **Model selection**: Select which model should be deployed
 • e.g., which polynomial degree or regularization value should be used?
choosing model based on test MSE

- We can use MSE on a held-out test set to determine the best model:

 - Blue points: Training set
 - Orange points: Held-out test set
choosing model based on test MSE

- We can use MSE on a held-out test set to determine the best model:

- The best model has the lowest test MSE

- This is often achieved when there is a small difference between training and test MSE
simulating testing data

• Ultimately, we’d like to actually test the model in the real world (e.g., predict tomorrow’s temperature)

• However, this is usually quite costly, time consuming, or downright impossible, so we have to simulate it

• To do this, we can split our dataset into:

 • **Training data**: A subset we use to train/fit the model

 • **Testing data**: A subset we used to report the generalized performance

 • Common splits: 90/10 (i.e., 90% training and 10% test) and 80/20

• **Note**: It is important that the algorithm never sees the testing data (just like it is important that students don’t see the real midterm)
• **k-fold cross validation** (often abbreviated CV) repeats the train/test split idea k times, across different **folds** of the data

• The data is divided into k parts

• In each fold, one part is used as the testing set, and the other $k - 1$ are used as the training set

• Thus, there are k models fit throughout this process, and we can average testing performance (and sometimes the coefficients)

• How many folds should be used?

• 3-fold, 5-fold and 10-fold are common

• **Leave-one-out CV**: k is the number of datapoints, i.e., one is held out in each fold (computationally expensive)
cross validation for model selection

• How do we determine the right value of λ?

• Test a wide range of λ typically log scale, e.g., 0.01,...,0.1,...,1,...,10,...,100

• Use multiple CV iterations, one for each value of λ:

 - Train all folds with $\lambda = 0.01$
 - Train all folds with $\lambda = 0.1$
 - Train all folds with $\lambda = 1$
 - Train all folds with $\lambda = 10$

 Choose λ^* whose CV performance is the best

 For final model, train model with all data using λ^*

Dataset \rightarrow Training with λ^* \rightarrow Final model
Suppose we collect three data points with a single feature x and target variable y. In the form (x, y), they are, approximately: $(2.18, 2.26)$, $(0.13, -14.57)$, $(2.75, 16.74)$.

Find the linear regression model $\hat{y} = ax + b$ and corresponding regularization parameter λ which has minimum cross validation error.

Use the Ridge model, $k = 3$ folds, and test $\lambda = 0, 0.1, 1$. Note that the coefficient b should NOT be regularized.
solution

• We need to solve the least squares equations for three values of lambda, and three folds each (i.e., 9 cases total). Here is the math for \(\lambda = 0, 0.1 \) and the second fold:

\[
\begin{align*}
\text{fold}=2, \lambda=0.0 \\
x &\sim [2.18, 0.13, 2.75] \\
y &\sim [2.26, -14.57, 16.74] \\
X: \\
\begin{bmatrix}
2.17997451 & 1. \\
2.74831239 & 1.
\end{bmatrix} \\
X^T @ X: \\
\begin{bmatrix}
12.30550986 & 4.9282869 \\
4.9282869 & 2.
\end{bmatrix} \\
X^T @ X + \lambda I: \\
\begin{bmatrix}
12.4 & 4.9282869 \\
4.9282869 & 2.
\end{bmatrix} \\
(X^T @ X + \lambda I)^{-1}: \\
\begin{bmatrix}
3.82403369 & -9.42296757 \\
-9.42296757 & 23.71954383
\end{bmatrix} \\
(X^T @ X + \lambda I)^{-1} @ X^T: \\
\begin{bmatrix}
-1.0866716 & 1.0866716 \\
3.1777147 & -2.1777147
\end{bmatrix} \\
(X^T @ X + \lambda I)^{-1} @ X^T @ y: \\
\begin{bmatrix}
-1.75951672 & 1.75951672 \\
4.8357016 & -3.8357016
\end{bmatrix} \\
\text{Only coefficient is changed by } \lambda, \text{ intercept is not regularized} \\
\text{Notice how different the inverse is just from a small } \lambda
\end{align*}
\]

\[
\begin{align*}
\text{fold}=2, \lambda=0.1 \\
x &\sim [2.18, 0.13, 2.75] \\
y &\sim [2.26, -14.57, 16.74] \\
X: \\
\begin{bmatrix}
2.17997451 & 1. \\
2.74831239 & 1.
\end{bmatrix} \\
X^T @ X: \\
\begin{bmatrix}
12.30550986 & 4.9282869 \\
4.9282869 & 2.
\end{bmatrix} \\
X^T @ X + \lambda I: \\
\begin{bmatrix}
12.40550986 & 4.9282869 \\
4.9282869 & 2.
\end{bmatrix} \\
(X^T @ X + \lambda I)^{-1}: \\
\begin{bmatrix}
3.82403369 & -9.42296757 \\
-9.42296757 & 23.71954383
\end{bmatrix} \\
(X^T @ X + \lambda I)^{-1} @ X^T: \\
\begin{bmatrix}
-1.0866716 & 1.0866716 \\
3.1777147 & -2.1777147
\end{bmatrix} \\
(X^T @ X + \lambda I)^{-1} @ X^T @ y: \\
\begin{bmatrix}
-1.0866716 & 1.0866716 \\
3.1777147 & -2.1777147
\end{bmatrix} \\
\text{notice how different the inverse is just from a small } \lambda
\end{align*}
\]
fold=2, lambda=0.0

\[
x = [2.18, 0.13, 2.75] \\
y = [2.26, -14.57, 16.74]
\]

\[
X = \begin{bmatrix}
2.17997451 & 1.00 \\
2.74831239 & 1.00
\end{bmatrix}
\]

\[
X^T @ X = \begin{bmatrix}
12.3050986 & 4.9282869 \\
4.9282869 & 2.00
\end{bmatrix}
\]

\[
X^T @ X + \lambda I = \begin{bmatrix}
12.3050986 & 4.9282869 \\
4.9282869 & 2.00
\end{bmatrix}
\]

\[
(X^T @ X + \lambda I)^{-1} = \begin{bmatrix}
6.19179817 & -15.25747891 \\
-15.25747891 & 35.09661673
\end{bmatrix}
\]

\[
(X^T @ X + \lambda I)^{-1} @ X^T @ y = \begin{bmatrix}
-1.75951672 & 1.75951672 \\
3.1777147 & -2.1777147
\end{bmatrix}
\]

\[
fold=2, lambda=0.1
\]

\[
x = [2.18, 0.13, 2.75] \\
y = [2.26, -14.57, 16.74]
\]

\[
X = \begin{bmatrix}
2.17997451 & 1.00 \\
2.74831239 & 1.00
\end{bmatrix}
\]

\[
X^T @ X = \begin{bmatrix}
12.3050986 & 4.9282869 \\
4.9282869 & 2.00
\end{bmatrix}
\]

\[
X^T @ X + \lambda I = \begin{bmatrix}
12.3050986 & 4.9282869 \\
4.9282869 & 2.00
\end{bmatrix}
\]

\[
(X^T @ X + \lambda I)^{-1} = \begin{bmatrix}
3.82403369 & -9.42296757 \\
-9.42296757 & 23.71954383
\end{bmatrix}
\]

\[
(X^T @ X + \lambda I)^{-1} @ X^T @ y = \begin{bmatrix}
-1.0866716 & 1.0866716 \\
3.1777147 & -2.1777147
\end{bmatrix}
\]

\[
\lambda^* = 0.10 \text{ has best average test MSE}
\]