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NLP From Scratch: Classifying Names with a
Character-Level RNN
Author: Sean Robertson (https://github.com/spro/practical-pytorch)

We will be building and training a basic character-level RNN to classify words. This tutorial, along
with the following two, show how to do preprocess data for NLP modeling "from scratch", in
particular not using many of the convenience functions of torchtext , so you can see how
preprocessing for NLP modeling works at a low level.

A character-level RNN reads words as a series of characters - outputting a prediction and
"hidden state" at each step, feeding its previous hidden state into each next step. We take the
final prediction to be the output, i.e. which class the word belongs to.

Specifically, we'll train on a few thousand surnames from 18 languages of origin, and predict
which language a name is from based on the spelling:

::

$ python predict.py Hinton
(-0.47) Scottish
(-1.52) English
(-3.57) Irish

$ python predict.py Schmidhuber
(-0.19) German
(-2.48) Czech
(-2.68) Dutch

Recommended Reading:

I assume you have at least installed PyTorch, know Python, and understand Tensors:

https://pytorch.org/ (https://pytorch.org/) For installation instructions
:doc: /beginner/deep_learning_60min_blitz  to get started with PyTorch in general
:doc: /beginner/pytorch_with_examples  for a wide and deep overview
:doc: /beginner/former_torchies_tutorial  if you are former Lua Torch user

# For tips on running notebooks in Google Colab, see
# https://pytorch.org/tutorials/beginner/colab
%matplotlib inline

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://github.com/spro/practical-pytorch
https://pytorch.org/


It would also be useful to know about RNNs and how they work:

The Unreasonable Effectiveness of Recurrent Neural Networks
(https://karpathy.github.io/2015/05/21/rnn-effectiveness/)_ shows a bunch of real life
examples
Understanding LSTM Networks (https://colah.github.io/posts/2015-08-Understanding-
LSTMs/)_ is about LSTMs specifically but also informative about RNNs in general

Preparing the Data
.. Note:: Download the data from here (https://download.pytorch.org/tutorial/data.zip) and extract
it to the current directory.

Included in the data/names  directory are 18 text files named as "[Language].txt". Each file
contains a bunch of names, one name per line, mostly romanized (but we still need to convert
from Unicode to ASCII).

We'll end up with a dictionary of lists of names per language, {language: [names ...]} .
The generic variables "category" and "line" (for language and name in our case) are used for later
extensibility

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://download.pytorch.org/tutorial/data.zip


In [2]:

Now we have category_lines , a dictionary mapping each category (language) to a list of
lines (names). We also kept track of all_categories  (just a list of languages) and
n_categories  for later reference.

['data/names/Czech.txt', 'data/names/German.txt', 'data/names/Arabic.tx
t', 'data/names/Japanese.txt', 'data/names/Chinese.txt', 'data/names/Vi
etnamese.txt', 'data/names/Russian.txt', 'data/names/French.txt', 'dat
a/names/Irish.txt', 'data/names/English.txt', 'data/names/Spanish.txt', 
'data/names/Greek.txt', 'data/names/Italian.txt', 'data/names/Portugues
e.txt', 'data/names/Scottish.txt', 'data/names/Dutch.txt', 'data/names/
Korean.txt', 'data/names/Polish.txt']
Slusarski

from __future__ import unicode_literals, print_function, division
from io import open
import glob
import os
 
def findFiles(path): return glob.glob(path)
 
print(findFiles('data/names/*.txt'))
 
import unicodedata
import string
 
all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)
 
# Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.co
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )
 
print(unicodeToAscii('Ślusàrski'))
 
# Build the category_lines dictionary, a list of names per language
category_lines = {}
all_categories = []
 
# Read a file and split into lines
def readLines(filename):
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    return [unicodeToAscii(line) for line in lines]
 
for filename in findFiles('data/names/*.txt'):
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines
 
n_categories = len(all_categories)
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Turning Names into Tensors
Now that we have all the names organized, we need to turn them into Tensors to make any use
of them.

To represent a single letter, we use a "one-hot vector" of size <1 x n_letters> . A one-hot
vector is filled with 0s except for a 1 at index of the current letter, e.g. "b" = <0 1 0 0 0 
...> .

To make a word we join a bunch of those into a 2D matrix <line_length x 1 x 
n_letters> .

That extra 1 dimension is because PyTorch assumes everything is in batches - we're just using a
batch size of 1 here.
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['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']

tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
0., 0., 1.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
0., 0., 0.,
         0., 0., 0.]])
torch.Size([5, 1, 57])

print(category_lines['Italian'][:5])

import torch
 
# Find letter index from all_letters, e.g. "a" = 0
def letterToIndex(letter):
    return all_letters.find(letter)
 
# Just for demonstration, turn a letter into a <1 x n_letters> Tensor
def letterToTensor(letter):
    tensor = torch.zeros(1, n_letters)
    tensor[0][letterToIndex(letter)] = 1
    return tensor
 
# Turn a line into a <line_length x 1 x n_letters>,
# or an array of one-hot letter vectors
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor
 
print(letterToTensor('J'))
 
print(lineToTensor('Jones').size())



Creating the Network
Before autograd, creating a recurrent neural network in Torch involved cloning the parameters of
a layer over several timesteps. The layers held hidden state and gradients which are now entirely
handled by the graph itself. This means you can implement a RNN in a very "pure" way, as
regular feed-forward layers.

This RNN module (mostly copied from [the PyTorch for Torch users tutorial]
(https://pytorch.org/tutorials/beginner/former_torchies/
(https://pytorch.org/tutorials/beginner/former_torchies/) nn_tutorial.html#example-2-recurrent-
net)_) is just 2 linear layers which operate on an input and hidden state, with a LogSoftmax layer
after the output.

.. figure:: https://i.imgur.com/Z2xbySO.png (https://i.imgur.com/Z2xbySO.png) :alt:
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To run a step of this network we need to pass an input (in our case, the Tensor for the current
letter) and a previous hidden state (which we initialize as zeros at first). We'll get back the output
(probability of each language) and a next hidden state (which we keep for the next step).
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import torch.nn as nn
 
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
 
        self.hidden_size = hidden_size
 
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
 
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
 
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
 
n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

input = letterToTensor('A')
hidden = torch.zeros(1, n_hidden)
 
output, next_hidden = rnn(input, hidden)

https://pytorch.org/tutorials/beginner/former_torchies/
https://i.imgur.com/Z2xbySO.png


For the sake of efficiency we don't want to be creating a new Tensor for every step, so we will
use lineToTensor  instead of letterToTensor  and use slices. This could be further
optimized by pre-computing batches of Tensors.
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As you can see the output is a <1 x n_categories>  Tensor, where every item is the
likelihood of that category (higher is more likely).

Training

Preparing for Training
Before going into training we should make a few helper functions. The first is to interpret the
output of the network, which we know to be a likelihood of each category. We can use
Tensor.topk  to get the index of the greatest value:
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We will also want a quick way to get a training example (a name and its language):

tensor([[-2.8889, -2.8474, -2.9432, -2.8653, -2.8664, -2.8983, -2.9383, 
-2.8155,
         -3.0116, -3.0238, -2.8319, -2.7677, -2.9007, -2.9664, -2.8175, 
-2.8376,
         -2.9150, -2.9317]], grad_fn=<LogSoftmaxBackward>)

('Greek', 11)

input = lineToTensor('Albert')
hidden = torch.zeros(1, n_hidden)
 
output, next_hidden = rnn(input[0], hidden)
print(output)

def categoryFromOutput(output):
    top_n, top_i = output.topk(1)
    category_i = top_i[0].item()
    return all_categories[category_i], category_i
 
print(categoryFromOutput(output))
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Training the Network
Now all it takes to train this network is show it a bunch of examples, have it make guesses, and
tell it if it's wrong.

For the loss function nn.NLLLoss  is appropriate, since the last layer of the RNN is
nn.LogSoftmax .
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Each loop of training will:

Create input and target tensors
Create a zeroed initial hidden state
Read each letter in and

Keep hidden state for next letter
Compare final output to target
Back-propagate
Return the output and loss

category = Dutch / line = Mulder
category = Spanish / line = Ramos
category = English / line = Danby
category = Scottish / line = Mackenzie
category = German / line = Derrick
category = Dutch / line = Klein
category = Spanish / line = Rivera
category = Polish / line = Nowak
category = Russian / line = Kachur
category = Chinese / line = Tong

import random
 
def randomChoice(l):
    return l[random.randint(0, len(l) - 1)]
 
def randomTrainingExample():
    category = randomChoice(all_categories)
    line = randomChoice(category_lines[category])
    category_tensor = torch.tensor([all_categories.index(category)], dtype
    line_tensor = lineToTensor(line)
    return category, line, category_tensor, line_tensor
 
for i in range(10):
    category, line, category_tensor, line_tensor = randomTrainingExample(
    print('category =', category, '/ line =', line)

criterion = nn.NLLLoss()
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Now we just have to run that with a bunch of examples. Since the train  function returns both
the output and loss we can print its guesses and also keep track of loss for plotting. Since there
are 1000s of examples we print only every print_every  examples, and take an average of
the loss.

learning_rate = 0.005 # If you set this too high, it might explode. If to
 
def train(category_tensor, line_tensor):
    hidden = rnn.initHidden()
 
    rnn.zero_grad()
 
    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)
 
    loss = criterion(output, category_tensor)
    loss.backward()
 
    # Add parameters' gradients to their values, multiplied by learning r
    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate)
 
    return output, loss.item()



In [12]: import time
import math
 
n_iters = 100000
print_every = 5000
plot_every = 1000
 
 
 
# Keep track of losses for plotting
current_loss = 0
all_losses = []
 
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
 
start = time.time()
 
for iter in range(1, n_iters + 1):
    category, line, category_tensor, line_tensor = randomTrainingExample(
    output, loss = train(category_tensor, line_tensor)
    current_loss += loss
 
    # Print iter number, loss, name and guess
    if iter % print_every == 0:
        guess, guess_i = categoryFromOutput(output)
        correct = '✓' if guess == category else '✗ (%s)' % category
        print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 10
 
    # Add current loss avg to list of losses
    if iter % plot_every == 0:
        all_losses.append(current_loss / plot_every)
        current_loss = 0



Plotting the Results
Plotting the historical loss from all_losses  shows the network learning:
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Evaluating the Results
To see how well the network performs on different categories, we will create a confusion matrix,
indicating for every actual language (rows) which language the network guesses (columns). To
calculate the confusion matrix a bunch of samples are run through the network with

5000 5% (0m 6s) 1.7866 Zhong / Chinese ✓
10000 10% (0m 12s) 2.1799 Kang / Chinese ✗ (Korean)
15000 15% (0m 19s) 2.4574 Dunmore / French ✗ (English)
20000 20% (0m 25s) 2.3446 Arnall / Irish ✗ (English)
25000 25% (0m 32s) 0.9424 She / Chinese ✓
30000 30% (0m 38s) 2.1284 Severijns / Greek ✗ (Dutch)
35000 35% (0m 44s) 2.1564 Espinosa / Czech ✗ (Spanish)
40000 40% (0m 52s) 2.3306 Charnock / Scottish ✗ (English)
45000 45% (0m 59s) 0.8680 Banos / Greek ✓
50000 50% (1m 5s) 2.0736 Ubina / Italian ✗ (Spanish)
55000 55% (1m 12s) 1.5325 Bock / Czech ✓
60000 60% (1m 18s) 0.0819 Niemczyk / Polish ✓
65000 65% (1m 24s) 3.6960 Rey / Korean ✗ (Spanish)
70000 70% (1m 31s) 0.1907 Tzarevsky / Russian ✓
75000 75% (1m 37s) 2.6453 Essop / Scottish ✗ (English)
80000 80% (1m 43s) 0.4020 Yeon / Korean ✓
85000 85% (1m 48s) 0.5061 Hatov / Russian ✓
90000 90% (1m 54s) 2.0221 Koeman / Irish ✗ (Dutch)
95000 95% (2m 0s) 1.5055 Peatain / French ✗ (Irish)
100000 100% (2m 6s) 0.0251 Wronski / Polish ✓

Out[13]: [<matplotlib.lines.Line2D at 0x7fb03083b430>]

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
 
plt.figure()
plt.plot(all_losses)



evaluate() , which is the same as train()  minus the backprop.
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<ipython-input-14-a5b341ffc3a3>:33: UserWarning: FixedFormatter should 
only be used together with FixedLocator
  ax.set_xticklabels([''] + all_categories, rotation=90)
<ipython-input-14-a5b341ffc3a3>:34: UserWarning: FixedFormatter should 
only be used together with FixedLocator
  ax.set_yticklabels([''] + all_categories)

# Keep track of correct guesses in a confusion matrix
confusion = torch.zeros(n_categories, n_categories)
n_confusion = 10000
 
# Just return an output given a line
def evaluate(line_tensor):
    hidden = rnn.initHidden()
 
    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)
 
    return output
 
# Go through a bunch of examples and record which are correctly guessed
for i in range(n_confusion):
    category, line, category_tensor, line_tensor = randomTrainingExample(
    output = evaluate(line_tensor)
    guess, guess_i = categoryFromOutput(output)
    category_i = all_categories.index(category)
    confusion[category_i][guess_i] += 1
 
# Normalize by dividing every row by its sum
for i in range(n_categories):
    confusion[i] = confusion[i] / confusion[i].sum()
 
# Set up plot
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(confusion.numpy())
fig.colorbar(cax)
 
# Set up axes
ax.set_xticklabels([''] + all_categories, rotation=90)
ax.set_yticklabels([''] + all_categories)
 
# Force label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
 
# sphinx_gallery_thumbnail_number = 2
plt.show()



You can pick out bright spots off the main axis that show which languages it guesses incorrectly,
e.g. Chinese for Korean, and Spanish for Italian. It seems to do very well with Greek, and very
poorly with English (perhaps because of overlap with other languages).



Running on User Input
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The final versions of the scripts in the Practical PyTorch repo (https://github.com/spro/practical-
pytorch/tree/master/char-rnn-classification)_ split the above code into a few files:

data.py  (loads files)
model.py  (defines the RNN)
train.py  (runs training)
predict.py  (runs predict()  with command line arguments)
server.py  (serve prediction as a JSON API with bottle.py)

Run train.py  to train and save the network.

Run predict.py  with a name to view predictions:

::

> Dovesky
(-0.46) Russian
(-1.56) Czech
(-2.61) English

> Jackson
(-0.37) Scottish
(-1.73) English
(-2.83) Russian

> Satoshi
(-0.73) Japanese
(-1.58) Arabic
(-2.10) Italian

def predict(input_line, n_predictions=3):
    print('\n> %s' % input_line)
    with torch.no_grad():
        output = evaluate(lineToTensor(input_line))
 
        # Get top N categories
        topv, topi = output.topk(n_predictions, 1, True)
        predictions = []
 
        for i in range(n_predictions):
            value = topv[0][i].item()
            category_index = topi[0][i].item()
            print('(%.2f) %s' % (value, all_categories[category_index]))
            predictions.append([value, all_categories[category_index]])
 
predict('Dovesky')
predict('Jackson')
predict('Satoshi')

https://github.com/spro/practical-pytorch/tree/master/char-rnn-classification


$ python predict.py Hazaki
(-0.42) Japanese
(-1.39) Polish
(-3.51) Czech

R d i it htt //l lh t 5533/Y (htt //l lh t 5533/Y ) t

Exercises
Try with a different dataset of line -> category, for example:

Any word -> language
First name -> gender
Character name -> writer
Page title -> blog or subreddit

Get better results with a bigger and/or better shaped network
Add more linear layers
Try the nn.LSTM  and nn.GRU  layers
Combine multiple of these RNNs as a higher level network

http://localhost:5533/Yourname

