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Why convolutional networks?

▸Neuroscientific inspiration

▸Computational reasons
▸Sparse computation (compared to full deep 

networks)
▸Shared parameters (only a small number of shared 

parameters)
▸Translation invariance
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Motivation for convolution networks:
Gabor functions derived from neuroscience 
experiments are simple convolutional filters [DL, ch. 9]
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Convolutional networks automatically learn filters 
similar to Gabor functions [DL, ch. 9]
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1D convolutions are similar but slightly different 
than signal processing / math convolutions
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Padding or stride parameters alter the 
computation and output shape
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1D convolutions are similar but slightly different 
than signal processing / math convolutions
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Switch to demo of 1D
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2D convolutions are simple generalizations to 
matrices

David I. Inouye 8

𝑥

𝑓

𝑦 𝑦
Stride of 2



Switch to demo of 2D
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3D convolutions are similar but usually channel 
dimension is assumed
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𝑥 ∈ ℛ!×#×$

𝑦 ∈ ℛ%×#!×$!

𝑓 ∈ ℛ!×&"×&#

“𝑓!×𝑓" convolution” (channel dimension is assumed)



Multiple convolutions increase the output 
channel dimension
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Common convolution configurations

▸Output has same height and width as input
▸1 x 1 convolution with padding=0, stride=1
▸3 x 3 convolution with padding=1, stride=1
▸5 x 5 convolution with padding=2, stride=1

▸Output has half the height and width of input
▸2 x 2 convolution with padding=0, stride=2
▸4 x 4 convolution with padding=1, stride=2
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Switch to demo of 3D, activation functions, and 
pooling

David I. Inouye 13



Standard Convolutional Layer Terminology
[DL, ch. 9]
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Demo of  CIFAR-10 CNN in Pytorch
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Two important modern CNN 
architecture concepts:

batch normalization and 
residual networks
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Batch normalization dynamically normalizes each 
feature to have zero mean and unit variance

▸Basic idea: Normalize input batch of each layer during the 
forward pass

1. Input is minibatch of data 𝑋! ∈ ℝ"×$ at iteration 𝑡
2. Compute mean and standard deviation for every feature 

𝜇%! = 𝔼 𝑥%! , 𝜎%! = 𝔼 𝑥%! − 𝜇%!
& , ∀𝑗 ∈ 1,⋯ , 𝑑

3. Normalize each feature (note different for every batch)

1𝑥',%! =
𝑥',%! − 𝜇%!

𝜎%!
4. Output 2𝑋!
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Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help 
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).



Because BatchNorm removes linear effects, 
extra linear parameters are also learned

▸The form of this final update is:

!𝑥$,&' =
𝑥$,&' − 𝜇&'

𝜎&'
⋅ 𝛾& + 𝛽&

▸Where 𝛾! and 𝛽! are learnable parameters
▸While 𝜇!" and 𝜎!" are computed from the minibatch

▸But how do we compute 𝜇&' and 𝜎&' about during 
test time (i.e., no minibatch)?
▸Use running average of mean and variance

𝜇()*' = 𝜆𝜇()*'+, + 1 − 𝜆 𝜇-.'/0'

𝜎1()*
' = 𝜆𝜎1()*

'+, + 1 − 𝜆 𝜎1-.'/0
'
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For CNNs, the channel dimension 
is treated as a “feature”

▸If the input minibatch tensor is 𝑋! ∈
ℝ"×$×%×&, then the channel dimension 𝑐 is 
treated as a feature:

𝜇'! = 𝔼 𝑥'! , 𝜎'! = 𝔼 𝑥'! − 𝜇'!
(
,

∀𝑗 ∈ 1,⋯ , 𝑐
▸Where the mean is taken over both the batch 

dimension 𝑚 and the spatial dimensions ℎ and 𝑤
▸Called “Spatial Batch Normalization”

▸Variants: Instance, Group or Layer  
Normalization
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https://pytorch.org/docs/stable/nn.html#normalization-layers



BatchNorm can stabilize and accelerate training 
of deep models

▸To use in practice:
▸Only normalize batches during training 

(model.train())
▸Turn off after training (model.eval())

▸Uses running average of mean and variance

▸Surprisingly effective at stabilizing training, 
reducing training time, and producing better 
models
▸Not fully understood why it works

David I. Inouye 20

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help 
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).



Demo of batch normalization in PyTorch
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Residual networks add the input 
to the output of the CNN

▸Most deep model layers have the form:
𝑦 = 𝑓 𝑥

▸Where 𝑓 could be any function including a 
convolutional layer like 𝑓 𝑥 = 𝜎 Conv 𝜎 Conv 𝑥

▸Residual layers add back in the input
𝑦 = 𝑓 𝑥 + 𝑥

▸Notice that 𝑓 𝑥 models the difference between 𝑥
and 𝑦 (hence the name residual)
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He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 770-778).



A residual network enables deeper 
networks because gradient 
information can flow between layers

▸A data flow diagram shows the 
“shortcut” connections
▸Consider composing 2 residual layers:
▸𝑧 1 = 𝑓1 𝑥 + 𝑥
▸𝑧 & = 𝑓& 𝑧 1 + 𝑧 1

▸Or, equivalently
𝑧 & = 𝑓& 𝑓1 𝑥 + 𝑥 + 𝑓1 𝑥 + 𝑥

▸If the residuals = 0, then this is 
merely the identity function
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Images from: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (pp. 770-778).



Detail: If the dimensionality is not the same, then use 
either fully connected layer or convolution layer to match

▸In the 1D case, suppose 𝑓 𝑥 :ℝ) → ℝ", then 
we need to multiply 𝑥 by linear operator to 
match the dimension

𝑦 = 𝑓 𝑥 +𝑊𝑥, where 𝑊 ∈ ℝ"×)

▸Similarly, for images, if 𝑓 𝑥 :ℝ$×%×& →
ℝ$#×%#×&#, we can apply a convolution layer to 
match the dimensions

𝑦 = 𝑓 𝑥 + conv 𝑥 ,
where conv ⋅ : ℝ$×%×& → ℝ$#×%#×&#
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Demo of CNN with very simple residual network
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U-Nets have an autoencoder structure with skip 
connections for semantic segmentation task
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Figure from: Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. 
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

▸Concatenation + 
convolution rather 
than residual skip 
connections

▸Any (pretrained) 
classification 
backbone can be 
used for encoder

▸State-of-the-art 
semantic 
segmentation are 
based on this idea


