
Convolutional Neural
Networks (CNN)

David I. Inouye
Thursday, February 9, 2023

David I. Inouye 0

Why convolutional networks?

▸Neuroscientific inspiration

▸Computational reasons
▸Sparse computation (compared to full deep

networks)
▸Shared parameters (only a small number of shared

parameters)
▸Translation invariance

David I. Inouye 1

Motivation for convolution networks:
Gabor functions derived from neuroscience
experiments are simple convolutional filters [DL, ch. 9]

David I. Inouye 2

Convolutional networks automatically learn filters
similar to Gabor functions [DL, ch. 9]

David I. Inouye 3

1D convolutions are similar but slightly different
than signal processing / math convolutions

David I. Inouye 4

1 2 3 2 5 1

1 2

𝑥

𝑓

5 8 7 12 7𝑦

Padding or stride parameters alter the
computation and output shape

David I. Inouye 5

1 2 3 2 5 1

1 2

𝑥

𝑓

5 7 7𝑦

Stride of 2

1D convolutions are similar but slightly different
than signal processing / math convolutions

David I. Inouye 6

1 2 3 2 5 1

1 2

𝑥

𝑓

2 5 8 7 12 7 1𝑦

Zero padding of 1

Switch to demo of 1D

David I. Inouye 7

2D convolutions are simple generalizations to
matrices

David I. Inouye 8

𝑥

𝑓

𝑦 𝑦
Stride of 2

Switch to demo of 2D

David I. Inouye 9

3D convolutions are similar but usually channel
dimension is assumed

David I. Inouye 10

𝑥 ∈ ℛ!×#×$

𝑦 ∈ ℛ%×#!×$!

𝑓 ∈ ℛ!×&"×&#

“𝑓!×𝑓" convolution” (channel dimension is assumed)

Multiple convolutions increase the output
channel dimension

David I. Inouye 11

𝑥 ∈ ℛ!×#×$

𝑦 ∈ ℛ'×#!×$!

𝑓(∈ ℛ!×&"×&#

Common convolution configurations

▸Output has same height and width as input
▸1 x 1 convolution with padding=0, stride=1
▸3 x 3 convolution with padding=1, stride=1
▸5 x 5 convolution with padding=2, stride=1

▸Output has half the height and width of input
▸2 x 2 convolution with padding=0, stride=2
▸4 x 4 convolution with padding=1, stride=2

David I. Inouye 12

Switch to demo of 3D, activation functions, and
pooling

David I. Inouye 13

Standard Convolutional Layer Terminology
[DL, ch. 9]

David I. Inouye 14

Demo of CIFAR-10 CNN in Pytorch

David I. Inouye 15

Two important modern CNN
architecture concepts:

batch normalization and
residual networks

David I. Inouye 16

Batch normalization dynamically normalizes each
feature to have zero mean and unit variance

▸Basic idea: Normalize input batch of each layer during the
forward pass

1. Input is minibatch of data 𝑋! ∈ ℝ"×$ at iteration 𝑡
2. Compute mean and standard deviation for every feature

𝜇%! = 𝔼 𝑥%! , 𝜎%! = 𝔼 𝑥%! − 𝜇%!
& , ∀𝑗 ∈ 1,⋯ , 𝑑

3. Normalize each feature (note different for every batch)

1𝑥',%! =
𝑥',%! − 𝜇%!

𝜎%!
4. Output 2𝑋!

David I. Inouye 17

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

Because BatchNorm removes linear effects,
extra linear parameters are also learned

▸The form of this final update is:

!𝑥$,&' =
𝑥$,&' − 𝜇&'

𝜎&'
⋅ 𝛾& + 𝛽&

▸Where 𝛾! and 𝛽! are learnable parameters
▸While 𝜇!" and 𝜎!" are computed from the minibatch

▸But how do we compute 𝜇&' and 𝜎&' about during
test time (i.e., no minibatch)?
▸Use running average of mean and variance

𝜇()*' = 𝜆𝜇()*'+, + 1 − 𝜆 𝜇-.'/0'

𝜎1()*
' = 𝜆𝜎1()*

'+, + 1 − 𝜆 𝜎1-.'/0
'

David I. Inouye 18

For CNNs, the channel dimension
is treated as a “feature”

▸If the input minibatch tensor is 𝑋! ∈
ℝ"×$×%×&, then the channel dimension 𝑐 is
treated as a feature:

𝜇'! = 𝔼 𝑥'! , 𝜎'! = 𝔼 𝑥'! − 𝜇'!
(
,

∀𝑗 ∈ 1,⋯ , 𝑐
▸Where the mean is taken over both the batch

dimension 𝑚 and the spatial dimensions ℎ and 𝑤
▸Called “Spatial Batch Normalization”

▸Variants: Instance, Group or Layer
Normalization

David I. Inouye 19

https://pytorch.org/docs/stable/nn.html#normalization-layers

BatchNorm can stabilize and accelerate training
of deep models

▸To use in practice:
▸Only normalize batches during training

(model.train())
▸Turn off after training (model.eval())

▸Uses running average of mean and variance

▸Surprisingly effective at stabilizing training,
reducing training time, and producing better
models
▸Not fully understood why it works

David I. Inouye 20

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

Demo of batch normalization in PyTorch

David I. Inouye 21

Residual networks add the input
to the output of the CNN

▸Most deep model layers have the form:
𝑦 = 𝑓 𝑥

▸Where 𝑓 could be any function including a
convolutional layer like 𝑓 𝑥 = 𝜎 Conv 𝜎 Conv 𝑥

▸Residual layers add back in the input
𝑦 = 𝑓 𝑥 + 𝑥

▸Notice that 𝑓 𝑥 models the difference between 𝑥
and 𝑦 (hence the name residual)

David I. Inouye 22

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 770-778).

A residual network enables deeper
networks because gradient
information can flow between layers

▸A data flow diagram shows the
“shortcut” connections
▸Consider composing 2 residual layers:
▸𝑧 1 = 𝑓1 𝑥 + 𝑥
▸𝑧 & = 𝑓& 𝑧 1 + 𝑧 1

▸Or, equivalently
𝑧 & = 𝑓& 𝑓1 𝑥 + 𝑥 + 𝑓1 𝑥 + 𝑥

▸If the residuals = 0, then this is
merely the identity function

David I. Inouye 23

Images from: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 770-778).

Detail: If the dimensionality is not the same, then use
either fully connected layer or convolution layer to match

▸In the 1D case, suppose 𝑓 𝑥 :ℝ) → ℝ", then
we need to multiply 𝑥 by linear operator to
match the dimension

𝑦 = 𝑓 𝑥 +𝑊𝑥, where 𝑊 ∈ ℝ"×)

▸Similarly, for images, if 𝑓 𝑥 :ℝ$×%×& →
ℝ$#×%#×&#, we can apply a convolution layer to
match the dimensions

𝑦 = 𝑓 𝑥 + conv 𝑥 ,
where conv ⋅ : ℝ$×%×& → ℝ$#×%#×&#

David I. Inouye 24

Demo of CNN with very simple residual network

David I. Inouye 25

U-Nets have an autoencoder structure with skip
connections for semantic segmentation task

David I. Inouye 26

Figure from: Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

▸Concatenation +
convolution rather
than residual skip
connections

▸Any (pretrained)
classification
backbone can be
used for encoder

▸State-of-the-art
semantic
segmentation are
based on this idea

