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How can we formalize the problem of  
“learning to walk”?
• Babies seem to learn to walk by just trying it multiple times until they 

learn to control their bodies.
• Given only some sensors like touch (pressure sensor) and the goal of  

moving forward, can an agent learn to walk?
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How can we formalize the problem of  
“learning optimal oil refinery configuration”?
• How do we configure each 

component to produce the 
most refined oil? 
• Especially in dynamic 

situations where operating 
conditions change
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Figure from: Alanbari, M., Rahman, I., Al-Ansari, N., & Knutsson, S. (2016). Comparison of 
potential environmental impacts on the production of gasoline and kerosene, Al-Daura refinery, 
Baghdad, Iraq. Engineering, 8(11), 767-776.



How can we formalize the problem of  
“learning optimal Netflix images”?
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Figures from 
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Reinforcement learning provides the formal 
framework to analyze each of  these problems
• What is reinforcement learning?
• “Goal-directed learning from interaction” (Sutton & Barto, 2018)

• Learning
• The system should adapt to new situations and learn from the past

• Goal-directed
• The learning process has an ultimate desired state

• Interaction
• The system can act to affect something outside itself
• The system receives information and feedback
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“Reinforcement learning” can refer to a 
problem, a solution, or a field of  study
• Problem
• How do we formalize the problem of  RL?
• How do we analyze the bounds of  this?
• How can we map a concrete application to this abstract problem?

• Solutions
• Once the (abstract or concrete) problem has been defined, how do we solve it 

with algorithms?
• How can we approximate the solution?

• Field of  study
• Everything surrounding RL including problem, solutions, preprocessing, etc.
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Trial-and-error search and delayed reward 
are two key aspects of  RL
• Trial-and-error search (or optimization)

• Loop of  action + feedback and repeat
• Cannot use gradient descent (at least directly)
• Cannot enumerate all possible solutions

• Delayed reward
• The ultimate value of  an action may not be known 

immediately
• Greedy approaches generally will not work
• The concept of  planning ahead can be critical
• Ultimately, delayed reward is related to the idea of  a 

“goal”

1. Learning to 
walk

2. Learning 
optimal oil 
refinery 
configuration

3. Learning 
optimal Netflix 
images
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What are the differences between 
supervised learning and RL?
• Supervised learning

1. Correct actions (i.e., labels) are given a priori for each training sample
• Fixed set of  (hopefully) representative examples

2. Training and testing/inference phases are usually separate
3. No real interaction with an environment / passive involvement

(e.g., predictions don’t directly change the environment)
4. Focused on prediction / Goal is generalization

• Reinforcement learning
1. Actions (or labels) are evaluated during deployment

• New examples can be gathered
2. Training (can) happen at the same time as testing/deployment
3. Direct interaction with environment
4. Focused on causal action / active involvement
5. In practice, much more general but also much harder
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What are the differences between 
unsupervised learning and RL?
• Unsupervised learning
• Aimed at discovering hidden structure
• Training and inference/sampling phases are usually separate
• No real interaction with an environment / passive involvement

(e.g., predictions don’t directly change the environment)

• Reinforcement learning
• Aimed at maximizing reward

• Unsupervised learning could be subtask
• Training (can) happen at the same time as inference/sampling

• The agent can collect new samples as it learns
• Direct interaction with environment
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Exploitation-exploration tradeoff  and 
specification of  goal are also differences
• Exploitation-exploration tradeoff
• Another consequence of  the interaction part of  RL

• RL focuses on the whole real-world problem rather 
than just subproblem
• Supervised and unsupervised learning can be used as 

subproblems within RL
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An “agent” and its “environment” are the core 
components of  the RL framework
• The agent:
• Senses its environment / Observe the state of  its environment

• The sensors could be physical (e.g., pressure sensor) or virtual (e.g., get 
Twitter trending topics)

• Takes actions (even no action is an “action”)

• The environment:
• Provides feedback based on an agent’s actions
• Can change over time
• Can be affected by external events
• Can be affected by agent’s actions
• Can have other agents inside of  it
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Policy, reward, value, and model are 
subelements of  the RL framework
1. Policy

• Maps from environment state to action (perhaps stochastically)
2. Reward

• Encodes long-term goal via short-term sensations/rewards
• Easy to define and observe/estimate

3. Value
• Represents long-term value of  an environment state or action
• Hard to define and estimate

4. Model of  the environment (optional)
• Enables the agent to hypothesize about future states of  the environment (e.g., 

planning)
• Could be seen as part of  the policy itself  (my take)
• Could be physics simulation environment or an ML prediction model
• NOTE: Generally, different than what we have called “model”, which in ML is 

usually the function approximator.
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Summary: RL is a more general framework than ML that 
enables interactive learning towards a desired state
• Interaction is the key difference from other learning paradigms because 

actions can both
• Change the environment (e.g., causal effects)
• Determine which data is collected during learning

• Long-term goals are encoded through short-term rewards
• Analogous to supervised learning

• Formally defining what is a cat or what is a proper English sentence is very hard
• Giving examples of  cat images or proper English sentences is easy

• In RL
• Defining all the tasks/subtasks needed to achieve a complex goal is very hard
• Defining reward functions is easy

• However, RL is much harder than supervised or unsupervised learning
• If  you can solve the problem without RL, you should.
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Reference

• Based on the excellent RL book by Sutton and Barto
• http://incompleteideas.net/book/the-book-2nd.html
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