Loss Functions and Regularization

David I. Inouye

Thursday, February 2, 2023
Outline

- Loss functions
 - Regression losses
 - Classification losses

- Regularization
 - “Implicit regularization” by changing k in KNN
 - L2 regularization
 - L1 regularization and feature selection

- Caveat: Very brief introduction to these concepts
 - If you want to learn more, take ECE595 Machine Learning I (Prof. Stanley Chan)
Many machine learning methods minimize the average loss (a.k.a. risk minimization)

- Remember linear regression objective:
 \[
 \theta^* = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2
 \]

- We can rewrite this as:
 \[
 \theta^* = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))
 \]

 - where \(\ell(y, \hat{y}) = (y - \hat{y})^2 \) is the **loss function**

- Many supervised ML can be written as above
Many supervised ML can be written minimizing the average loss

- Ordinary least squares uses **squared loss**:\[
\ell(y, \hat{y}) = (y - \hat{y})^2
\]

- Logistic regression uses **logistic loss**:
 \[
 \ell(y, \hat{p} \in [0,1]) = y \log \hat{p} + (1 - y) \log(1 - \hat{p})
 \]
 \[
 \ell(y, \hat{z} \in \mathbb{R}) = y \log \sigma(\hat{z}) + (1 - y) \log(1 - \sigma(\hat{z}))
 \]

- Classification error is known as **0-1 loss**:
 \[
 \ell(y, \hat{y}) = \begin{cases}
 0, & \text{if } y = \hat{y} \\
 1, & \text{otherwise}
 \end{cases}
 \]
Example: **Absolute error** is less sensitive to outliers but is harder to optimize

- Absolute error loss is:
 \[\ell(y, \hat{y}) = |y - \hat{y}| \]
Example: The **hinge loss** is used for learning support vector machine (SVM) classifiers

- **Hinge loss** is defined as:
 \[\ell(y, \hat{z}) = \max\{0, 1 - y\hat{z}\} \]
 (Note: \(y \in \{-1, 1\}\))

(Assume \(y = 1\) below)

- The hinge loss is the closest convex approximation to 0-1
- 0-1 loss is non-convex and hard to optimize

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
Regularization is a common method to improve generalization by reducing the complexity of a model.

- k in KNN can be seen as an *implicit* regularization technique.

- We can use *explicit* regularization for parametric models by adding a regularizer $R(\theta)$

\[
\min_{\theta} \sum_{i} \ell(y_i, f_{\theta}(x_i)) + \lambda R(\theta)
\]

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
Brief aside: 1D polynomial regression can be computed by creating polynomial “pseudo” features

- Suppose we have 1D input data, i.e., $X \in \mathbb{R}^{n \times 1}$
- We can create pseudo polynomial features, e.g.

$$X' = \begin{bmatrix}
 x_1 & x_1^2 & x_1^3 \\
 x_2 & x_2^2 & x_2^3 \\
 x_3 & x_3^2 & x_3^3
\end{bmatrix} \in \mathbb{R}^{n \times 3}$$

- Linear regression can then be used to fit a polynomial model

$$y_i = \theta_1 x_i + \theta_2 (x_i^2) + \theta_3 (x_i^3) \ldots$$
Brief aside: 1D polynomial regression can be computed by creating polynomial “pseudo” features.
Ridge Regression: A squared norm regularizer encourages small parameter values

- Ridge regression is defined as:
 \[
 \min_\theta \|\mathbf{y} - X\theta\|^2_2 + \lambda \|\theta\|^2_2
 \]

Regularizing the parameters of 1D polynomial regression helps to improve test MSE if chosen appropriately.
Lasso Regression: An L_1 norm regularizer encourages **sparsity** in the parameters (i.e., zeros)

- Lasso regression is defined as:
 $$\min_{\theta} \| y - X\theta \|_2^2 + \lambda \|\theta\|_1$$

Because lasso encourages **exact zeros**, lasso can be used for **feature selection**.

$$f_\theta(x) = \theta_1 x_1 + \theta_2 x_2$$

$$= (0) x_1 + \theta_2 x_2$$

$$= \theta_2 x_2$$