Topic Models

David I. Inouye
Topic models are unsupervised methods for text data that extract topic and document representations.

1. Given a dataset of text documents (often called a **corpus**), what are the main topics or themes?

2. Can you find a compressed semantic representation of each document/instance?
Motivation: Difficult to discover new and relevant information in uncategorized text collections

- Example: New York Times news articles
 - Automatically categorize articles into different themes
 - How do these themes change over time?
 - What specific articles are in each theme?

- Expensive manual option: Employ many humans to carefully read and categorize

- Cheap automatic option: Use topic models!
 - No labels are required! Just raw text
Other examples that could leverage topic models

- Survey responses
- Customer feedback
- Research papers
- Emails
Overview of topic models

- Motivation
- Preliminary: Representing documents
- Latent Semantic Indexing: Non-probabilistic topic model
 - Mathematical formulation
 - Interpretation of solutions
 - Limitations
- Probabilistic topic models
 - Categorical and multinominal distributions
 - Mixture of multinomials
 - Document-specific mixture of multinomials (LDA)
 - Interpretation
- Algorithms
 - Variational inference (via ELBO as in VAEs)
 - MCMC Gibbs sampling
Preliminary: How should a collection of documents be represented?

- Two naïve assumptions

1. Each word is considered a single unit (called **unigram**)

2. Order of words ignored (**Bag-of-words** assumption)

The sun is bright.
The bright sun is red.

2 1 3 4
2 4 1 3 5

the sun is bright
= bright sun the is
Preliminary: The document collection can be represented as a word-count matrix

- Each row represents a document
- Each column represents a word
- Each element represents the number of times (i.e., count) that word occurred in the document

Create word-count matrix in scikit-learn: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
Example word-count matrix

- This movie is very scary and long
- This movie is long and is slow
- This movie is long, spooky good

<table>
<thead>
<tr>
<th></th>
<th>1 This</th>
<th>2 movie</th>
<th>3 is</th>
<th>4 very</th>
<th>5 scary</th>
<th>6 and</th>
<th>7 long</th>
<th>8 not</th>
<th>9 slow</th>
<th>10 spooky</th>
<th>11 good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Review 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Review 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Latent semantic indexing (LSI) is one of the simplest topic models and uses truncated SVD

- Optimization over low rank matrices θ and β

$$
\theta, \beta = \min_{\theta, \beta} \| X - \theta \beta^T \|_F^2
$$

- Solution: Truncated SVD of $X = USV^T$

$$
\theta = US_{k}, \quad \beta = V_{k}
$$
LSI “topics” can capture **synonymy** or similarity between words

- **Examples:**
 - “Car” and “automobile” (synonyms)
 - “School” and “education” (related)
- These related words will tend to have high weights in the same row of the topic matrix β^T

“Automotive” topic may have high values on columns for “car”, “automobile” and “truck".
LSI document representation groups documents even if their exact words do not overlap

- **Example**
 - One document only uses the word “car”
 - One document only uses the word “automobile”
 - The documents may have no exact words shared but are similar
LSI problem: Interpretation of topics and representations is challenging since values could be arbitrary

- SVD implicitly assume data is real-valued
 - (e.g., -2.1, 3.5, -1.2, 100.1)

- Yet input word-count matrix is discrete data
 - Non-negative integer values (e.g., 0,1,2,3,etc.)

- What do negative values mean? (e.g., automobile is 1.1 but school is -0.5)

- What does the scale of these values mean? (e.g., 4 or 0.2)
LSI problem: No generative model to create new data (less deep understanding)

- Like the difference between AEs and VAEs
 - VAEs provide a way to generate fake new data

- “What I cannot create, I do not understand.” – Richard Feynman

- Previously we’ve considered mostly continuous generative models (GANs, VAEs, flows, etc.)

- What about discrete generative models?
A generative model defines the *assumed* generative/simulation process of data

- A generative model defines various distributions and how they relate

- The model parameters are not known/given at this stage (more like a template)
 - Learning/training from data comes later

- The assumptions may be very unrealisitic but nonetheless may provide useful information
 - “All models are wrong, some are useful” – George Box
 - Akin to assuming a linear regression model (i.e., probably wrong assumption but still often useful)
The **categorical distribution** generalizes the Bernoulli (coin flip) distribution to many outcomes.

- Intuition, rolling a d-sided dice
- Each side has a probability $p_s = \Pr(x = s)$
- In our case, d is the number of unique words in our corpus
The **multinomial distribution** is a simple model for count data (the “Ind. Gaussian” for count data)

- **Intuition**, roll d-sided dice L times and record count for each side
- **Example**: Flip a biased coin 10 times and count how many are heads and tails

\[x_3 = L - x_1 - x_2 \]
The multinomial distribution is a simple model for count data (the "Ind. Gaussian" for count data)

- Word counts can be modeled as
 \[x \sim \text{Multinomial}(p; L) \]
 - \(p \) is the probability for each word
 - \(L \) is the number of words in the document (i.e., length)
 - \(L = \sum_s x_s = \|x\|_1 \)

- Multinomial generative process
 - Repeat \(\ell = 1 \) to \(L \):
 - Sample individual words \(w_{i,\ell} \sim \text{Categorical}(p) \) (where \(w_{i,\ell} \) are one hot vectors)
 - \(x_i = \sum w_{i,\ell} \) (equivalent to \(x_i \sim \text{Multinomial}(p; L) \))
A mixture of multinomials adds complexity like mixture of Gaussians

- Let $x \sim \text{MixtureMult}(\pi, (\beta_1, \cdots, \beta_k); N)$
 - π is the mixture weights
 - β_j is the probability vector for the j-th multinomial component distribution
 - N is the number of words in a document

- Mixture generative process (assume L is fixed)
 - Sample single topic $z_i \sim \text{Categorical}(\pi)$
 - Repeat $\ell = 1$ to L:
 - Sample individual words $w_{i, \ell} \sim \text{Categorical}(\beta_{z_i})$ (where w_{ℓ} are one hot vectors)
 - $x_i = \sum w_{i, \ell}$ (equivalent to $x_i \sim \text{Multinomial}(\beta_{z_i}; L)$)
Interpretation of multinomials and mixture of multinomials

- **Multinomial distribution**
 - Assumes all documents have the same “topic”
 - A topic is the probability for each word

- **Multinomial mixture**
 - Each component represents a topic
 - Each document only has one topic

- What if each documents have multiple topics?
Document-specific topic mixtures:

Latent Dirichlet Allocation (LDA) defines a model where *each document* can have multiple topics.
Background: Dirichlet distribution is a distribution over the probability simplex

- The **probability simplex** is the set of vectors that are non-negative and sum to 1
 \[\Delta^d := \{ x \in [0,1]^d : \sum x_s = 1 \} \]
- Dirichlet is simplest distribution on this set
The generative process of LDA is a mixture of mixtures (or admixture)

- Mixture generative process (assume L is fixed)
 - Sample single topic $z_i \sim \text{Categorical}(\pi)$
 - Repeat $\ell = 1$ to L:
 - Sample individual words $w_{i,\ell} \sim \text{Categorical}(\beta_{z_i})$
 (where w_{ℓ} are one hot vectors)
 - $x_i = \sum w_{i,\ell}$ (equivalent to $x_i \sim \text{Multinomial}(\beta_{z_i}; L)$)

- LDA generative process (assume L is fixed)
 - Sample mixture over topics $\theta_i \sim \text{Dirichlet}(\alpha)$
 - Repeat $\ell = 1$ to L:
 - Sample topic of word $z_{i,\ell} \sim \text{Categorical}(\theta_i)$
 - Sample individual words $w_{i,\ell} \sim \text{Categorical}(p_{z_{i,\ell}})$
 - $x_i = \sum w_{i,\ell}$ (equivalent to $x_i \sim \text{Multinomial}(p = \beta\theta_i; L)$)
Latent Dirichlet Allocation (LDA) defines a model where each document can have multiple topics.

After training, we can recover more interpretable topics and document representations

- Each topic is a probability distribution $\beta_j \in \Delta^d$
- Each document is represented by a probability distribution over topics $\theta_i \in \Delta^k$
- Can be seen as “discrete PCA” method
Estimating these generative models for text data

- **Multinomial model**
 - MLE has closed form solution (merely empirical frequencies)

- **Mixture of multinomials**
 - Expectation maximization (EM) algorithm or other mixture-based algorithms

- **LDA**
 - Variational inference (i.e., ELBO on unknown parameters θ)
 - MCMC/Gibbs sampling (often performs better)
Bayesian inference can be used to **learn/train** model parameters (despite the name)

- **Prior distribution** $p_\alpha(\theta)$ – An **assumed** distribution of the model parameters θ before seeing any data where α is a user-specified hyperparameter.

- **Sampling distribution** $p(X|\theta)$ - The distribution of the training data X given the model parameters θ.

- **Posterior distribution** - The distribution of the parameters after having seen data X.

$$p(\theta|X) = \frac{p(\theta, X)}{p(X)} = \frac{p_\alpha(\theta)p(X|\theta)}{\int p_\alpha(\theta)p(X|\theta)d\theta}$$

- The **mode** or **mean** of the **posterior** $p(\theta|X)$ can provide an estimate for the model parameters θ given training data X.
The **conditional** topic assignment of a single word of LDA given all other topic assignments is known in closed-form

- **LDA joint distribution**
 (only \(W\) is observed, others are latent)

\[
p(\theta, \beta, Z, W) := p_\eta(\beta) \prod_{i=1}^{n} p_\alpha(\theta_i) \prod_{\ell=1}^{L_i} P(z_{i,\ell}|\theta_i)P(w_{i,\ell}|\beta_{z_{i,\ell}})
\]

- **Goal:** Mean or mode of posterior

\[
p(\theta, \beta, Z|W) = \frac{p(\theta, \beta, Z, W)}{\int \int \int p(\theta, \beta, Z, W) d\theta d\beta dZ}
\]

- **Fact 1:** If \(Z\) is known, then obtaining \(\theta\) and \(\beta\) is easy so we just need \(Z\).

- **Fact 2:** The topic distribution of a **single word** is known in closed-form *conditioned* on the topics of all other words:

\[
P(z_{i,\ell} = j|Z_{-(i,\ell)}, W) \propto P(z_{i,\ell} = j|Z_{-(i,\ell)})P(w_{i,\ell}|Z_{-(i,\ell)}, W) = \left(\frac{C_{i,j}^{DT} + \alpha}{\sum_{j'} C_{i,j'}^{DT} + \alpha}\right) \left(\frac{C_{w_{i,\ell},j}^{WT} + \eta}{\sum_{w} C_{w,j}^{WT} + \eta}\right)
\]

- \(C_{i,j}^{DT}\) is the document-topic counts for document \(i\) and topic \(j\)

- \(C_{w_{i,\ell},j}^{WT}\) is the word-topic counts for the current word \(w_{i,\ell}\) and topic \(j\)
Gibbs sampling enables sampling from a joint distribution by only sampling from conditionals

- Gibbs sampling for LDA
 - Randomly initialize Z (like optimization initialization)
 - For $i \in [1, 2, \ldots, n]$
 - For $\ell \in [1, 2, \ldots, L_i]$
 - Sample $z_{i, \ell} \sim P(z_{i, \ell} = j|Z_{-(i, \ell)}, W) \propto \frac{c_{i, j}^{DT} + \alpha}{\sum_j c_{i, j}^{DT} + \alpha} \cdot \frac{c_{w_{i, \ell}, j}^{WT} + \eta}{\sum_j c_{w_{i, \ell}, j}^{WT} + \eta}$

 (This can be seen as sampling the topic of single word.)
 - Repeat until convergence
 - If run long enough, then $Z \sim P(Z|W)$.
- A special type of Metropolis-Hastings Markov Chain Monte Carlo (MCMC) sampling method

David I. Inouye
Demo of Gibbs sampling for LDA
Additional resources for topic modeling

- Gentle introduction to topic modeling

- More resources/tutorials

- Nice lecture from CMU on topic models and sampling:

- Text analysis with scikit-learn
 https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html