Gradient Descent

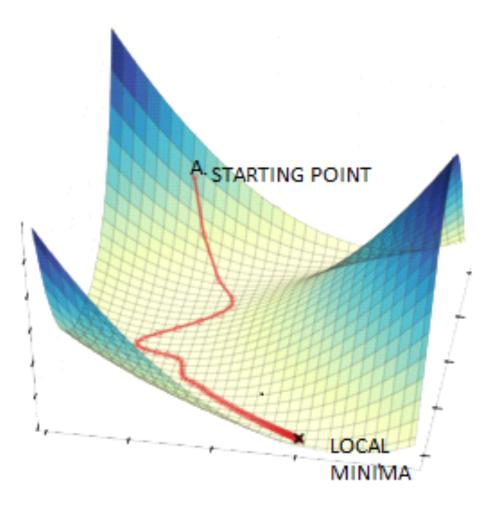
David I. Inouye

Most AI/ML optimizations must be **numerically** optimized

- One common algorithm is gradient descent
 - Primary algorithm for deep learning
 - Works in very high dimensions

- Other optimization algorithms
 - Expectation Maximization (alternating optimization)
 - Sampling-based optimization (MCMC/Gibb)
 - Greedy optimization (e.g., decision trees)

Gradient descent is like taking steps down the steepest descent into a valley



https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/

Vanilla gradient descent (GD) has simple form

- Objective (Loss) function denoted by $\mathcal{L}(\theta; \mathcal{D})$: arg min $\mathcal{L}(\theta; \mathcal{D})$
- 1. Start at random parameter, e.g., $\theta^0 \sim \mathcal{N}(0, 1)$
- 2. Iteratively update parameter via <u>negative</u> <u>gradient</u> of loss function (η_t is step size or

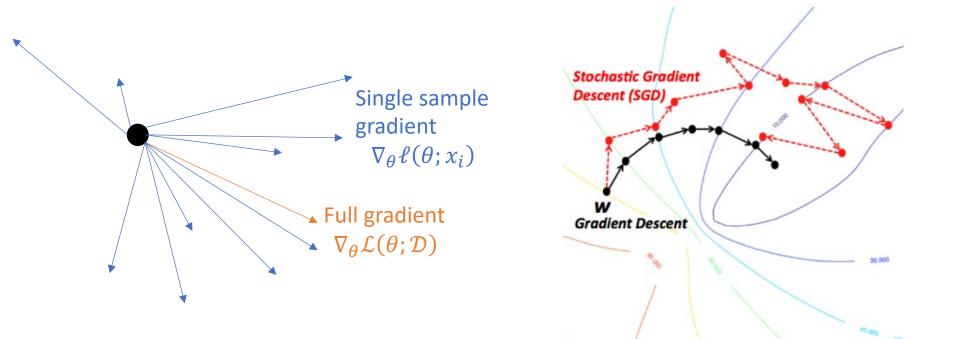
$$\theta^{t+1} = \theta^t - \eta_t \nabla_\theta \mathcal{L}(\theta^t)$$

 η_t is learning rate (or step size)

Stochastic gradient descent (SGD) merely uses one sample in the gradient calculation

- The loss function can usually be split into a summation of losses $\ell(\theta; x_i)$ for each sample x_i : $\mathcal{L}(\theta; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; x_i)$
- SGD approximates the full gradient by the gradient of a single sample
 - $\nabla_{\theta} \mathcal{L}(\theta^{t}; \mathcal{D}) \approx \nabla_{\theta} \ell(\theta^{t}; x_{i})$
 - Theoretically, $\mathbb{E}_{i}[\nabla_{\theta}\ell(\theta^{t};x_{i})] = \nabla_{\theta}\mathcal{L}(\theta^{t};\mathcal{D})$
- ► Loop through all $x_i \in \mathcal{D}$ $\theta^{t+1} = \theta^t - \eta_t \nabla_\theta \ell(\theta^t; x_i)$
- One pass through dataset
 - GD: 1 large update with O(n) cost
 - SGD: n smaller updates with O(1) cost each

Stochastic gradient descent (SGD) merely uses one sample in the gradient calculation



Full gradient is average over single sample gradients. This is why it is "stochastic".

https://golden.com/wiki/Stochastic_gradient_descent_(SGD)

<u>Mini-batch SGD</u> (or just SGD) uses a small batch of samples in the gradient calculation

- Mini-batch SGD approximates the full gradient by the gradient of a batch of samples
 - Sample mini-batch

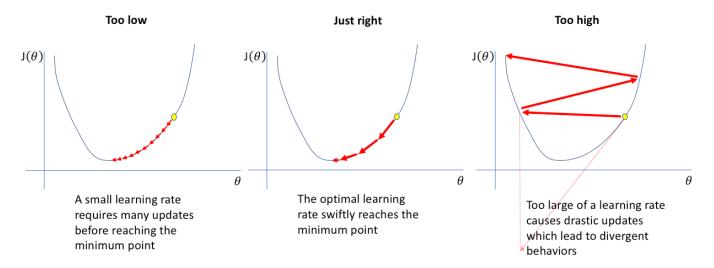
$$\theta^{t+1} = \theta^t - \eta_t \sum_{k=1}^b \frac{1}{b} \nabla_\theta \ell(\theta^t; x_k)$$

- One pass through dataset
 - ► GD: 1 large update
 - ► SGD: *n* smaller updates
 - Mini-batch SGD: $\frac{n}{b}$ medium-size updates

Gradient descent demo for simplified logistic regression

Learning rate / step size is critical for convergence and correctness of algorithm

- If learning rate is too high, the algorithm could diverge.
 - Diverge means to get farther away from the solution.
- If learning rate too low, the algorithm could take a very long time to converge.



https://www.jeremyjordan.me/nn-learning-rate/

Adaptive learning rates may help <u>(but not</u> <u>always)</u>

- Decreasing step size, $\eta_t = \frac{1}{t}$
 - ▶ Intuition: Approaches 0 but can cover an infinite distance since $\lim_{a\to\infty} \sum_{t=1}^{a} \frac{1}{t} = \infty$
- ADAM Adaptive Moment Estimation
- See <u>https://pytorch.org/docs/stable/optim.html</u> for more options

Parameter initialization can be important if non-convex or step size incorrect

If convex function, initial parameter θ⁰ will not affect final optimization result θ = argmin L(θ).
 Yay! (Assuming

appropriate step size.)

- If non-convex, starting position <u>WILL</u> affect final converged θ.
 - Sad day. (But sometimes it's not too bad in practice.)

