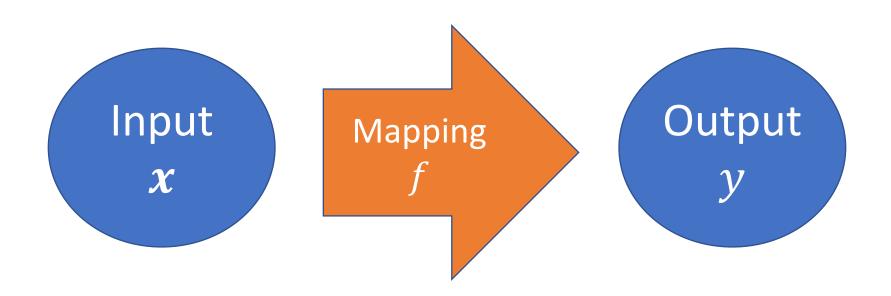
Introduction to Machine Learning (and Notation)

David I. Inouye

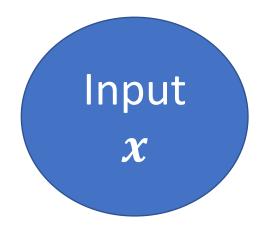
Outline

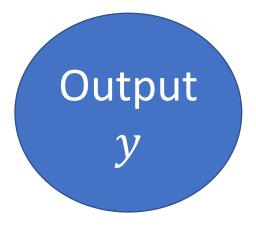
- Supervised learning
 - Regression
 - Classification
- Unsupervised learning
 - Dimensionality reduction (PCA)
 - Clustering
 - Generative models
- Other key concepts
 - Generalization
 - No free lunch theorem

The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output



The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output given only input-output examples



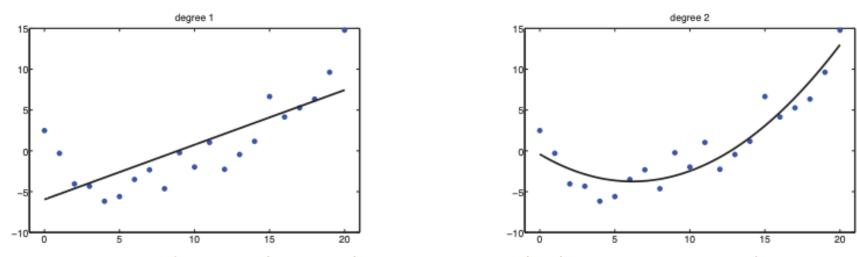


The set of input-output pairs is called a <u>training set</u>, denoted by $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$

▶ Input x_i

- Called <u>features</u> (ML), <u>attributes</u>, or <u>covariates</u> (Stats). Sometimes just <u>variables</u>.
- ► Can be <u>numeric</u>, <u>categorical</u>, <u>discrete</u>, or <u>nominal</u>.
- Examples
 - ► [height, weight, age, gender]
 - $[x_1, x_2, \cdots, x_d]$ A d-dimensional vector of numbers
 - ▶ Image
 - ► Email message
- Output y_i
 - Called <u>output</u>, <u>response</u>, or <u>target</u> (or <u>label</u>)
 - ▶ Real-valued/numeric output: e.g., $y_i \in \mathcal{R}$
 - ▶ Categorical, discrete, or nominal output: y_i from finite set, i.e., $y_i \in \{1,2,\cdots,c\}$

If the output y_i is numeric, then the problem is known as <u>regression</u>



NOTE: Input x does not have to be numeric. Only the output y must be numeric.

- Given height x_i , predict age y_i
- Predict GPA given SAT score
- Predict SAT score given GPA
- Predict GRE given SAT and GPA

If output is <u>categorical</u>, then the problem is known as <u>classification</u>

• Given height x, predict "male" (y = 0) or "female" (y = 1)

• Given salary x_1 and mortgage payment x_2 , predict defaulting on loan ("yes" or "no")

predicted: cat

predicted: cat

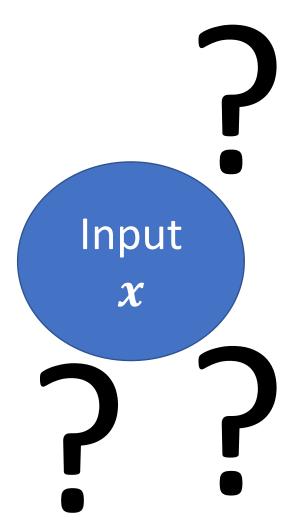
predicted: dog

predicted: cat

predicted: cat

predicted: dog

The goal of <u>unsupervised learning</u> is to model or understand the input data without labels



Dimensionality reduction

Clustering

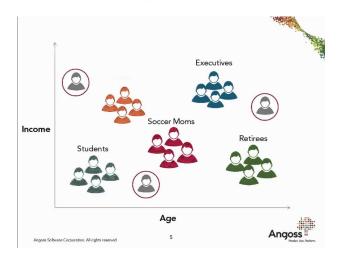
Generative models

"What I cannot create I do not understand"

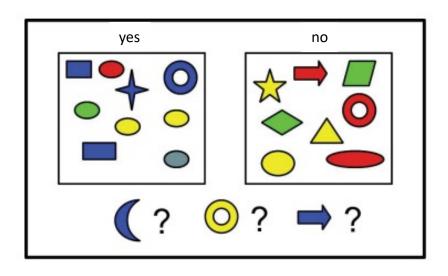
Richard Feynman

In unsupervised learning, the <u>training set</u> is only a set of input values $\mathcal{D} = \{x_i\}_{i=1}^n$

- ► [Dimensionality reduction] Estimate a single number that summarizes all variables of wealth (e.g. credit score)
- [Clustering] Estimate natural groups of customers
- ► [Generative Models] Estimate the distribution of normal transactions to detect fraud (anomalies)



Generalization beyond the training set is the main goal of learning



d features/attributes/covariates

n samples/observations/examples

Color Is it good? Shape Size (cm) Blue Square 10 yes x_1 y_1 Red Ellipse 2.4 yes y_2 20.7 Red Ellipse no

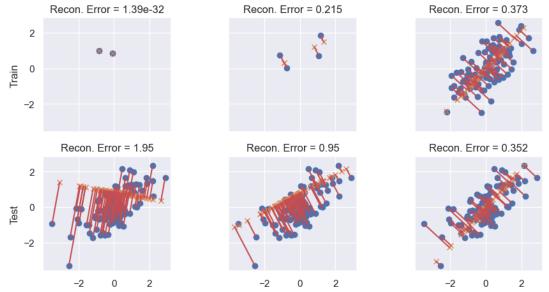
Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

Generalization beyond the training set is the main goal of learning

	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias 	- Training error slightly lower than test error	- Low training error - Training error much lower than test error - High variance
Regression			my
Classification			

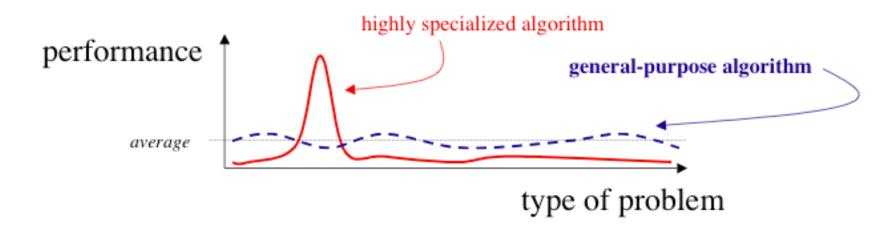
What does generalization look like for unsupervised learning?

- Generalization in dimensionality reduction
 - Objective on train may be small but test may be large



Generalization in generative models can be understood through the view of log likelihood. "All models are wrong, but some models are useful."*

- All models are approximations
- All models make assumptions
- Assumptions are never perfect
- No Free Lunch Theorem



^{*} George Box (Box and Draper 1987, page 424).