K-Nearest Neighbors
(and Evaluating ML Methods)

David I. Inouye
Outline

- K-Nearest Neighbors (KNN) simple algorithm
- Evaluating methods (i.e., generalization error)
 - Train vs test data
 - Cross validation
- Hyperparameter tuning (choosing k)
- Curse of dimensionality
The naïve KNN algorithm requires computing the distance to all training points

Input: Test point x_0, training data $\{x_i, y_i\}_{i=1}^{n}$
Output: Predicted class y_0

1. Compute distance to all training points:
 \[d_i = d(x_0, x_i), \forall i \]
2. Sort distances where π is a permutation:
 (e.g., $\pi(1)$ is the index of the closest point)
 \[d_{\pi(1)} \leq d_{\pi(2)} \leq \cdots \leq d_{\pi(n)} \]
3. Return the most common class of the top k
 \[y_0 = \text{mode} \left\{ y_{\pi(j)} \right\}_{j=1}^{k} \]
K-nearest neighbors (KNN) is a very simple and intuitive supervised learning algorithm

1. Find the k nearest neighbors
 ▶ Equivalently, expand circle until it includes k points

2. Select most common class

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
1-NN partitions the space into Voronoi cells based on the training data.

http://scott.fortmann-roe.com/docs/BiasVariance.html
The KNN boundary gets "smoother" as k increases.

1-nearest neighbours

20-nearest neighbours

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
How should method performance be estimated?

- Demo on using KNN with training data
How should method performance be estimated? It should be evaluated on **unseen test data**

▸ If we train and evaluate on the **same** data, **the model may not generalize well**.

▸ **Analogy to class**

 ▸ **Training data** is like homeworks, sample problems, and sample exams

 ▸ **Testing data** is like the real exam
We actually care about the method’s performance on **new unseen data**

Data we have

Medical domain
- Disease records for past patients

Photos domain
- Human-labeled images

Business domain
- Historical stock prices

What we want

Medical domain
- Predict disease for **new patients**

Photos domain
- Predict object in **new photos**

Business domain
- Predict **future stock prices**
Estimating **generalization** on unseen data is important for model evaluation and model selection

1. **Model evaluation**
 - Is the model accurate enough to deploy?
 - Example: The business department may decide that the ML predictions will be worthwhile if the accuracy in the real world is above 90% on average.

2. **Model selection**
 - Which of many possible models should be used?
 - Example: Which value of k is best for KNN?
Generalization error measures how much error the model makes on unseen data

- How do we measure generalization error since (by definition) we don’t have new unseen data?

Act like we do! 😊
Generalization error can be estimated by splitting the known dataset

- **Split the dataset**

 1. The **training dataset** is used to estimate the model

 2. The **test dataset** (or **held-out dataset**) is used to estimate generalization error.

 ![Diagram showing the process of splitting the dataset and estimating generalization error.]

 8.4% classification error
Cross-validation (CV) generalizes the simple train/test split to M disjoint splits (effectively reusing data)

- Repeat the split process M times
 - Fit new model on train
 - Evaluate model on test
- Note: M models are fitted throughout process
- Final error estimate is average over all folds

$M = 3, M = 5, M = 10$ are common
Generalization error via CV can aid in **model selection** (or hyperparameter selection)

(1) Run CV (to estimate generalization) for multiple k

(2) Choose k^* whose CV performance is the best

$$k^* = \arg \min_k \text{CVGenError}(k; X)$$

(3) For final model, train model with all data using k^*
Back to demo for using cross validation for KNN
But what if we want to select a model AND estimate the model’s performance?

- **Inception!**

- **Nested train/test split (most common)**

- **Nested CV (better but expensive)**
Real-world caveat:
Even CV performance estimates are only good if **real-world distribution** is like the training data

- Training images in the daytime, but real-world images may be at night
 - (Domain generalization tackles this problem)

- Training based on historical court cases that are biased against minorities, but real-world court cases should be unbiased
 - (Fairness in AI/ML is a recent popular topic)

- Training based on historical stock market data, but real-world stock market has changed
Okay, back to KNN... 😊
KNN regression can be used to predict continuous values

1. Find k nearest neighbors
2. Predict average of k nearest neighbors (possibly weighted by distance)

https://medium.com/analytics-vidhya/k-neighbors-regression-analysis-in-python-61532d56d8e4
The performance and intuitions of KNN degrade significantly in high dimensions (one consequence of the curse of dimensionality)

- The distances between **any two points** in high dimensions is nearly the same

Distance between two random points concentrate around a single value
The curse of dimensionality is **unintuitive**

Example: Most space is in the “corners”

- Ratio between unit hypersphere to unit hypercube
 - 1D: $2/2 = 1$
 - 2D: $\frac{\pi}{4} = 0.7854$
 - 3D: $\frac{\pi}{3} = 0.5238$

- d-dimensions: $V_d(r) = \frac{n}{\Gamma\left(\frac{n}{2} + 1\right)} r^d$
 - Thus, for 10-D: $2.55/2^{10} = 2.55/1024 = 0.00249$
Solution 1: Reduce the dimensionality and then use KNN

MNIST Digits

Fig. 3. (A) The two-dimensional codes for 500 digits of each class produced by taking the first two principal components of all 60,000 training images. (B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder. For an alternative visualization, see (8).
Solution 2 (non-KNN): Compute distance to hyperplane instead

Distance to hyperplane is **constant** but pairwise distances between points grows as dimensionality increase.

How do we compute distance to hyperplane?

Dot product with unit normal vector plus constant!

$$x^Tn + c$$

One view of linear classifiers:
1D projection and then classification

Excellent illustrations from: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
Related reading and source for KNN curse of dimensionality illustrations

» https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html