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The agent and environment are the two key 
actors in RL – How should they be defined?
• Example: Humanoid robot
• Is the “agent” the whole robot?
• What “actions” can the “agent” take?

• Walk forward?
• Increase power to left leg motor?

• The agent is probably the “controller” of  the robot
• In fact, the position of  arms and legs might be part of  the 

“environment” (e.g., they could be stuck or lose power)
• Suppose a leg breaks, the controller cannot fix the 

leg by itself so the leg is actually a part of  the 
environment
• The agent could put more power to the other leg and try 

to balance on one leg but it does not have direct control 
of  the leg
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The agent and environment are the two key 
actors in RL – How should they be defined?
• Example: Oil refinery
• Is the “agent” the whole refinery?
• What “actions” can the “agent” take?

• Produce x amount of  crude oil?
• Change temperature of  this module?
• Increase the electricity going to fan or heater?

• The agent is again just the “controller” part of  
the refinery
• Each module may have its own controller/agent
• The top-level controller can only “ask” for 

something (i.e., a command) but it may not happen 
(e.g., something breaks or impossible to fulfill)

David I. Inouye, Purdue University
3



The agent and environment are the two key 
actors in RL – How should they be defined?
• The agent should only be defined as the part 

that can be directly and explicitly controlled 
via concrete actions
• Actions – Select how much power send to each 

robotic motor
• Actions – Change fan speed
• Actions – Request subcontrollers to produce a 

certain amount
• Note: The boundary should be defined by what can 

be controlled rather than what is known
• The environment is anything that is NOT the 

agent (I’d call it the non-agent more precisely)
• Actual position of  the robot body
• Actual temperature in boiler
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Markov Decision Processes (MDP) mathematically 
formalize RL problems via random variables
• Sensation / Observation
• Observing the environment 
• Encoded as a random variable called state 𝑆!

• Action 
• Agent’s ability to interact with the environment.
• Encoded as a random variable called action 𝐴!

• Reward
• Immediate feedback from the environment
• Encoded as a random variable called reward 𝑅!
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MDPs model a discrete sequence 
of  states, actions, and rewards
• At each discrete timestep 𝑡
• Agent receives environment state 

𝑆! ∈ 𝒮
• Agent decides action based on state, 

𝐴! 𝑆! ∈ 𝒜 𝑆!
• Agent receives reward and new state

𝑅!"# ∈ ℝ, 𝑆!"# ∈ 𝒮
• This creates a sequence of  state, action, 

reward:
𝑆!, 𝐴!, 𝑅", 𝑆", 𝐴", 𝑅#, 𝑆#, 𝐴#, 𝑅$, …
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MDPs model the joint distribution of  this sequence 
by assuming conditional independence
• Using the chain rule, we could define the probability of  the following sequence 
𝑆$, 𝐴$, 𝑅#, 𝑆#, 𝐴#, 𝑅%, 𝑆%, 𝐴%, 𝑅&, …
𝑝 𝑆$ 𝑝 𝐴$ 𝑆$ 𝑝 𝑆#, 𝑅# 𝑆$, 𝐴$ 𝑝 𝐴# 𝑆$, 𝐴$, 𝑆#, 𝑅# 𝑝 𝑆%, 𝑅% 𝑆$, 𝐴$, 𝑆#, 𝑅#, 𝐴# …
• MDPs assume conditional independence

• Action only depends on current state
• New state and reward only depend on current state and action (Markov part of  MDP)

𝑝 𝑆! 𝑝 𝐴! 𝑆! 𝑝 𝑆", 𝑅" 𝑆!, 𝐴! 𝑝 𝐴" 𝑆!, 𝐴!, 𝑆", 𝑅" 𝑝 𝑆#, 𝑅# 𝑆!, 𝐴!, 𝑆", 𝑅", 𝐴" …
• The environment’s dynamics are completely represented by:

𝑝 𝑆!, 𝑅! 𝑆!'#, 𝐴!'#
• The agent’s dynamics are completely represented by a policy:

𝜋 𝐴! 𝑆! ≔ 𝑝 𝐴! 𝑆!
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The goal or ultimate objective is to find a policy that 
maximizes the (weighted) sum of  future rewards
• While rewards are immediate, the goal is to maximize the long-term expected return, i.e., 

sum of  future rewards
• Episodic tasks have a special terminal state and then are reset to a standard starting state

• Usually assumed to be completely independent
• Examples: Game playing or trips through a maze
• Expected return could just be a sum of  future rewards: 𝐺! = ∑"#$% 𝑅!&"&'

• Continual tasks do not have a clear terminal state
• A simple sum of  rewards would not converge (i.e., infinite)
• Examples: Controlling an oil refinery or a robot learning to walk
• Expected return is usually a weighted sum of  future rewards where 𝛾 is the discount rate

𝐺! = &
"#$

(

𝛾"𝑅!&"&' , where 0 < 𝛾 < 1

• If  we assume that for episodic tasks, ∀𝑡 > 𝑇, 𝑅! = 0, we can simply use the notation for 
continual tasks but allow 𝛾! = 1 if  it is episodic
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Returns at the current timestep are equal to rewards 
plus discounted returns at next timestep
• 𝐺+ = ∑,-!. 𝛾,𝑅+/,/"
• = 𝑅+/" + 𝛾𝑅+/# + 𝛾#𝑅+/$ + 𝛾$𝑅+/0 +⋯
• = 𝑅+/" + 𝛾 𝑅+/# + 𝛾𝑅+/$ + 𝛾#𝑅+/0 +⋯
• = 𝑅+/" + 𝛾𝐺+/"

• Thus, returns are recursively related to each other
• This simple relationship is fundamental to theoretic development later
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The state-value function defines the expected 
return of  a state given a particular policy 𝜋
• Remember, rewards are easy. Estimating value is hard.
• Estimating value is the key to most RL algorithms.
• First, we define the value of  states.
• The state-value function for policy 𝜋 is

𝑣1 𝑠 ≔ 𝔼1 𝐺+ 𝑆+ = 𝑠
= 𝔼1 ∑,-!. 𝛾,𝑅+/,/" 𝑆+ = 𝑠

• The expectation is based on the given policy 𝜋 (e.g., random/greedy policy)
• How “good” is this state, given that the agent follows 𝜋 for all actions 

afterwards?
• Important: This state-value function will be different for different policies.
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The Bellman equation for 𝑣! is a special recursive 
equation whose solution is the value function
• 𝑣( 𝑠 ≔ 𝔼( 𝐺! 𝑆! = 𝑠
• = 𝔼( 𝑅!"# + 𝛾𝐺!"# 𝑆! = 𝑠 , see previous slide
• = ∑),+,,),)),+),,))… 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝜋 𝑎. 𝑠. 𝑝 𝑠.., 𝑟. 𝑠., 𝑎. … …

• = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 A
B

𝑟 +
𝛾 ∑)),+),,)),…𝜋 𝑎. 𝑠. 𝑝 𝑠.., 𝑟. 𝑠., 𝑎. 𝐺!"#

• = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝔼( 𝐺!"# 𝑆!"# = 𝑠.

• = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣( 𝑠′

• 𝑣( 𝑠 = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣( 𝑠′
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Example: Solved Bellman equation (which is a system of  linear 
equations) to find the value function for a random policy
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Example copied verbatim from page 60 of Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

𝛾 = 0.9

• 𝑣$ 𝑠 =
∑%,',(!	𝜋 𝑎 𝑠 𝑝 𝑠*, 𝑟 𝑠, 𝑎 [

]
𝑟 +

𝛾𝑣$ 𝑠′
• 𝑣$ 1,1 = 𝑁 + 𝑆 + 𝐸 +𝑊

• = "
+
B

C

−1 + 𝛾 3.3 + G
H

0 +
𝛾 1.5 + 0 + 𝛾 8.8 + G

H
−1 +

𝛾 3.3

• = "
+
B

C

−1 + 0.9 3.3 + G
H

0 +
0.9 1.5 + 0 + 0.9 8.8 +
−1 + 0.9 3.3

• = 3.3 = 𝑣$ 1,1



The action-value function defines the expected return of  taking 
an action given a current state AND a particular policy 𝜋

• We now define the value of  an action given a current state and policy 𝜋
• The action-value function for policy 𝜋 is defined as:

𝑞1 𝑠, 𝑎 ≔ 𝔼1 𝐺+ 𝑆+ = 𝑠, 𝐴+ = 𝑎
= 𝔼1 ∑,-!. 𝛾,𝑅+/,/" 𝑆+ = 𝑠, 𝐴+ = 𝑎

• The key difference is that now we condition on the next action 𝑎
• The expectation is based on the given policy 𝜋 (e.g., random/greedy policy)
• How “good” is the action, given that the agent first takes action 𝑎 and then 

follows 𝜋 for all actions afterwards?
• Important: This action-value function will be different for different policies.
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Optimal policies and optimal value functions 
can be defined and exist theoretically
• How should we define an optimal policy?

• We want it to mean that this policy will produce the most expected return (i.e., long-term reward).
• One policy 𝜋 is better than another policy 𝜋. if  it’s value function is better for all 

possible states
𝜋 ≥ 𝜋. ⇔ 𝑣( 𝑠 ≥ 𝑣() 𝑠 , ∀𝑠 ∈ 𝒮

• There exists at least one policy that is better or equal to all others called an optimal 
policy 

𝜋∗ ≥ 𝜋, ∀𝜋
• All optimal policies (possibly more than one) share the same optimal state-value 

function
𝑣∗ 𝑠 ≔ max

(
𝑣( 𝑠 , ∀𝑠 ∈ 𝒮

• Similarly, they share the same optimal action-value function
𝑞∗ 𝑠, 𝑎 = max

(
𝑞( 𝑠, 𝑎 , ∀𝑠 ∈ 𝒮
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The Bellman optimality equation for 𝑣∗ enables 
solving for the optimal state-value function
• 𝑣∗ 𝑠 = max

)
𝑞(∗ 𝑠, 𝑎

• = max
)
𝔼(∗ 𝐺! 𝑆! = 𝑠, 𝐴! = 𝑎

• = max
)
𝔼(∗ 𝑅!"# + 𝛾𝐺!"# 𝑆! = 𝑠, 𝐴! = 𝑎

• = max
)
𝔼 𝑅!"# + 𝛾𝑣∗ 𝑆!"# 𝑆! = 𝑠, 𝐴! = 𝑎

• = max
)
∑,),+ 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠.

• No optimal policy here!  Just the model part since we are taking maximum over 
actions.
• For finite MDPs, this can be solved via a system of  non-linear equations
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The Bellman optimality equation for 𝑞∗ enables 
solving for the optimal action-value function

• 𝑞∗ 𝑠, 𝑎 = 𝔼 𝑅+/" + 𝛾maxN 𝑞∗ 𝑠, 𝑎 𝑆+ = 𝑠, 𝐴+ = 𝑎

• = ∑O!,P 𝑝 𝑠Q, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
N!

𝑞∗ 𝑠Q, 𝑎Q

• Again, no policy here, just the 𝑞 function!
• This can be solved as well.
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The optimal value functions can be used to 
construct an optimal policy!
• If  we have 𝑣∗ 𝑠 , then we can simply choose the optimal action that will 

maximize the value after taking one action
𝑎+∗ = arg max

N
;
O!,P

𝑝 𝑠Q, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠Q

• Called one-step search or greedy search with respect to state-value function 𝑣∗ 𝑠
(rather than greedy with respect to the expected immediate reward 𝔼 𝑅!|𝐴! = 𝑎 )
• Greedy/local w.r.t. 𝑣∗ is globally optimal.

• If  we have 𝑞∗ 𝑠, 𝑎 , then the optimal action is even simpler:
𝑎+∗ = arg max

N
𝑞∗ 𝑠, 𝑎

• The action-value function “caches” the one-step search values
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Example: With the Gridworld optimal value 
function, we can define the optimal policy
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Example copied verbatim from page 65 of Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



MDPs solved!? No…
Solution relies on several difficult assumptions
1. The dynamics of  the environment are known (i.e., 

𝑝 𝑆+ , 𝑅+ 𝑆+R", 𝐴+R" is known perfectly)
• Except in simple simulations like grid world, these dynamics are rarely known
• Even for simple games like chess, the opponent’s strategy is unknown so the 

dynamics are unknown

2. Computational resources are sufficient for this calculation
• For example, even a simple backgammon game has 10%$ states

3. The states have the Markov property 
• All relevant information of  the past must represented in the environment state
• It is often difficult to ensure this property in real-world scenarios
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RL is about approximating solutions to these 
MDPs
• While optimal solutions are almost never possible, approximations can still be 

quite useful
• Most RL algorithms focus on estimating the value functions in some way
• RL algorithms often substitute knowledge of  the environment with actual 

experience in place of  knowledge (like in bandits)
• One saving grace in practice is that not all states are equally likely

• This is akin to the notion that real-world data (e.g., images) is much simpler than the 
high-dimensional space it lives in

• Thus, generalization beyond the theoretic “worst case” is possible in practice
• While there are other algorithms for solving MDPs, the online nature of  RL 

distinguishes it from other approaches to MDPs
• It can collect more information on the “common” states and thus do well
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Summary of  MDPs
• Agent and environment mappings for problems

• The agent is defined as what is directly controllable (NOT mere knowledge)
• The environment is everything else

• MDPs model this interaction with states, actions and rewards
• The environment is defined by the transition distribution 𝑝 𝑆!, 𝑅! 𝑆!+', 𝐴!+'
• The agent is defined by a policy 𝜋 𝐴! 𝑆!
• Together, they define a joint distribution over sequences of  states, actions and rewards

• The agent attempts to optimize the expected return, which is the discounted sum of  future 
rewards

• The state-value and action-value functions represent the long-term value of  states or 
actions

• An optimal policy can be constructed from optimal value functions 
• In practice, RL algorithms usually approximate these value functions in an online manner 

even if  the environment is unknown
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Reference

• Based on the excellent RL book by Sutton and Barto
• http://incompleteideas.net/book/the-book-2nd.html
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