Unsupervised Dimensionality Reduction via PCA

David I. Inouye

Very high-dimensional data is becoming ubiquitous

- Images (1 million pixels)
- Text (100k unique words)
- Genetics (4 million SNPs)
- Business data (12 million products)

Single Nucleotide Polymorphism (SNPs)

Amazon Best Sellers

Why dimensionality reduction? Visualization

- Allows 2D scatterplot visualizations even of high-dimensional data (2D projection of digits)

Why dimensionality reduction?
Lower computation costs

- Suppose original dimension is large like $\mathrm{d}=100000$
(e.g., images, DNA sequencing, or text)

4-5 million SNPs in human genome.
https://www.diagnosticsolutionslab.com/tests/genomicinsight

Why dimensionality reduction?

 Underlying phenomena is on lower dimensional space

Outline of Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction
2. Formal PCA problem: Min reconstruction
3. Derive PCA formulation for 1D

- Least error 1D projection is orthogonal
- Sum over all data points

4. Solution is based on truncated SVD
5. Equivalent problem: Max variance

Math: Principal Component Analysis (PCA) can be formalized as minimizing the linear reconstruction error of the data using only $k \leq d$ dimensions

- PCA can be formalized as
$\min _{\mathrm{Z} \in \mathbb{R}^{n \times k}, W \in \mathbb{R}^{d \times k}}\left\|X_{c}-Z W^{T}\right\|_{F}^{2}$ s.t. $W^{T} W=I_{k}$
- where

$$
\mathrm{X}_{\mathrm{c}}=\mathrm{X}-\mathbf{1}_{n} \mu_{x}^{T} \in \mathbb{R}^{n \times d} \quad \text { (centered input data) }
$$

Review of linear algebra and introduction to numpy Python library

- See Jupyter notebook, which can be opened and run in Google Colab

Math: Principal Component Analysis (PCA) can be formalized as minimizing the linear reconstruction error of the data using only $k \leq d$ dimensions

- PCA can be formalized as
$\min _{\mathrm{Z} \in \mathbb{R}^{n \times k}, \mathrm{~W} \in \mathbb{R}^{d \times k}}\left\|X_{C}-Z W^{T}\right\|_{F}^{2} \quad$ s.t. $W^{T} W=I_{k}$
- where

$$
\mathrm{X}_{\mathrm{c}}=\mathrm{X}-\mathbf{1}_{n} \mu_{x}^{T} \in \mathbb{R}^{n \times d} \quad \text { (centered input data) }
$$

Math: Principal Component Analysis (PCA) can be formalized as minimizing the linear reconstruction error of the data using only $k \leq d$ dimensions

$$
\min _{\mathrm{Z} \in \mathbb{R}^{n \times k}, \mathrm{~W} \in \mathbb{R}^{d \times k}}\left\|X_{C}-Z W^{T}\right\|_{F}^{2} \quad \text { s.t. } W^{T} W=I_{k}
$$

- Let's stare at this equation some more ©
-What does the orthogonal constraint mean?
- Why minimize the squared Frobenius norm?
- $\left\|X_{c}-Z W^{T}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}^{T}-\mathbf{z}_{i}^{T} W^{T}\right\|_{2}^{2}=\sum_{i=1}^{n}\left\|\boldsymbol{x}_{\boldsymbol{i}}-W \boldsymbol{z}_{i}\right\|_{2}^{2}$
- For analysis, let's simplify to a single dimension (i.e., $k=1$)
- $\sum_{i=1}^{n}\left\|\boldsymbol{x}_{\boldsymbol{i}}-z_{i} \boldsymbol{w}\right\|_{2}^{2}$ where z_{i} is a scalar

What is the best projection given a fixed subspace (line in 1D case)?

- If we are given \boldsymbol{w}, what is the best z (i.e. minimum reconstruction error) for a given \boldsymbol{x} ?
$\Rightarrow \min _{z}\|x-z w\|_{2}^{2}$

- The orthogonal projection!
- $z=\boldsymbol{x}^{T} \boldsymbol{w}=\|\boldsymbol{x}\|\|\boldsymbol{w}\| \cos \theta=\|\boldsymbol{x}\| \cos \theta$
- $z=\|x\| \cos \theta=$ hyp $\cdot \frac{\text { adj }}{\text { hyp }}=$ adj
- $z \boldsymbol{w}$ is a scaled vector along the line defined by \boldsymbol{w}

Thus, we can simplify to only minimizing over W
$\min _{z, \boldsymbol{w}:\|\boldsymbol{w}\|_{2}=1} \sum_{i=1}^{n}\left\|x_{i}-z_{i} \boldsymbol{w}\right\|_{2}^{2}=\min _{\boldsymbol{w}:\|\boldsymbol{w}\|_{2}=1} \sum_{i=1}^{n}\left\|x_{i}-\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}\right) \boldsymbol{w}\right\|_{2}^{2}$

- Now we can return to the Frobenius norm:

$$
\min _{\boldsymbol{w}:\|\boldsymbol{w}\|_{2}=1}\left\|X_{c}-\boldsymbol{z} \boldsymbol{w}^{\boldsymbol{T}}\right\|_{F}^{2} \text { where } \boldsymbol{z}=X_{c} \boldsymbol{w}
$$

- What is $\boldsymbol{z} \boldsymbol{w}^{\boldsymbol{T}}$? Have we seen something like this before?
- This is the best rank-1 approximation to X_{C}, which is given by the SVD!
- $\boldsymbol{w}=\boldsymbol{v}_{1}$ and $\boldsymbol{z}=\sigma_{1} \boldsymbol{u}_{1}$, where $\sigma_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}$ are the first singular value, left singular vector and right singular vector respectively.

For $k \geq 1$, the PCA solution is the top k right singular vectors

- If $X_{c}=U S V^{T}$, then the general solution is

$$
W^{*}=V_{1: k}
$$

- Remember: SVD is best k dim. approximation

Intuition: Principal component analysis finds the best linear projection onto a lower-dimensional space

2D to 1D projection: Red lines show the projection error onto 1D lines. PCA finds the line that has the smallest projection error (in this example, when it aligns with the purple).

Minimizing reconstruction error (red lines) is equivalent to maximizing the variance of projection (spread of red points)

Max reconstruction error
Min variance

Min reconstruction error Max variance

$=\operatorname{argmax} \sigma_{Z}^{2}$ $w:\|w\|_{2}=1$

Derivation of equivalence will require 2 facts

1. The squared Frobenius norm is equal to the trace of matrix times itself:

- $\|A\|_{F}^{2}=\operatorname{Tr}\left(A^{T} A\right)=\operatorname{Tr}\left(A A^{T}\right)$

2. Optimization solutions are invariant when the objective is multiplied by positive constant or a constant is added,

- $\underset{W}{\operatorname{argmin}} f(W)=\underset{W}{\operatorname{argmin}} a f(W)+b, \quad \forall a>0, b \in \mathbb{R}$

The PCA objective can be decomposed into the original variance minus the variance of projection

- Minimize reconstruction error
 $W: W^{T} W=I_{k}$
- $\left\|X_{C}-Z W^{T}\right\|_{F}^{2}$
$\bullet=\operatorname{Tr}\left(\left(X_{c}-Z W^{T}\right)\left(X_{c}-Z W^{T}\right)^{T}\right)$
$\bullet=\operatorname{Tr}\left(X_{c} X_{c}^{T}-2 Z W^{T} X_{c}^{T}+Z W^{T}\left(Z W^{T}\right)^{T}\right)$
$\stackrel{ }{ }=\operatorname{Tr}\left(X_{c} X_{c}^{T}-2 Z Z^{T}+Z W^{T} W Z^{T}\right)$
$\stackrel{\operatorname{lr}}{ } \quad \operatorname{Tr}\left(X_{c} X_{c}^{T}-2 Z Z^{T}+Z Z^{T}\right)$
$\stackrel{\wedge}{ }=\operatorname{Tr}\left(X_{c} X_{c}^{T}-Z Z^{T}\right)$
$\stackrel{=}{\operatorname{Tr}}\left(X_{c} X_{c}^{T}\right)-\operatorname{Tr}\left(Z Z^{T}\right)$
$\stackrel{\rightharpoonup}{ } \operatorname{Tr}\left(X_{c}^{T} X_{c}\right)-\operatorname{Tr}\left(Z^{T} Z\right)$

Equivalence is derived by manipulating optimization problem
$-\operatorname{argmin}\left\|X_{c}-\left(X_{C} W\right) W^{T}\right\|_{F}^{2}$

$$
W: W^{T} W=I_{k}
$$

- $=\operatorname{argmin} \operatorname{Tr}\left[X_{c}^{T} X_{c}\right]-\operatorname{Tr}\left[Z^{T} Z\right]$ $W: W^{T} W=I_{k}$
- $=\operatorname{argmin}-\operatorname{Tr}\left[Z^{T} Z\right]$ $W: W^{T} W=I_{k}$
$\bullet=\operatorname{argmax} \operatorname{Tr}\left[Z^{T} Z\right]$ $W: W^{T} W=I_{k}$
$\bullet=\underset{\operatorname{argmax}}{\sum_{j=1}^{k} \hat{\sigma}_{z, j}^{2}}$

$$
W: W^{T} W=I_{k} \quad \text { sum of variances in projected space) }
$$

Equivalent solutions: The solution to both problems is the top k right singular vectors of X_{c}

- Minimize reconstruction error

$$
\min _{W: W^{T} W=I_{k}}\left\|X_{c}-\left(X_{c} W\right) W^{T}\right\|_{F}^{2}
$$

- Singular value decomposition (SVD) of $X_{c}=U S V^{T}$
- Solution: $W^{*}=V_{1: k}$
- Maximize variance of latent projection (equivalent solution)

$$
\max _{W: W^{T} W=I_{k}} \operatorname{Tr}\left(Z^{T} Z\right)=\sum_{j=1}^{k} \hat{\sigma}_{Z, j}^{2}
$$

- Equivalent solution is the eigenvectors of $X_{c}^{T} X_{c}=n \widehat{\Sigma}$
- $X_{c}^{T} X_{c}=\left(U S V^{T}\right)^{T}\left(U S V^{T}\right)=\left(V S U^{T}\right)\left(U S V^{T}\right)=V S\left(U^{T} U\right) S V^{T}=V S^{2} V^{T}=Q \Lambda Q^{T}$
- Solution: $W^{*}=Q_{1: k} \equiv V_{1: k}$!

Recap: Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction
2. Formal PCA problem: Min reconstruction
3. Derive PCA formulation for 1D

- Least error 1D projection is orthogonal
- Sum over all data points

4. Solution is based on truncated SVD
5. Alternative viewpoint: Max variance

- Derive equivalence
- Derive equivalent solutions

Demo of PCA via sklearn (time permitting)

- Random projections vs PCA projections
- Visualizations of
- Minimum reconstruction error
- Maximum variance
- Explained variance based on k
- Code examples
- Digits
- Eigenfaces

Questions?

