Unsupervised Dimensionality
Reduction via PCA
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Very high-dimensional data
IS becoming ubiquitous

> Images (1 million pixels)

> Text (100k unique
words) focs T

Ca TATGTG
.. C C
- "AcgTCGA Ac

> Genetics (4 million SNPs) B O paencn TG,

> Business data (12 million < ] =

products) 'L o 8 B




Why dimensionality reduction?
Visualization

> Allows 2D scatterplot visualizations even of
high-dimensional data (2D projection of digits)

2 8
g o
@ .{' - L . 7
20 S o™ (" .
: ° ." L = (ﬂﬂ :'. & L' 2

: ;:. o : F 4 ,‘.., ,,.‘ : "R 278
10 e '-,ft'“ié'k;"»""’* — i
c

- i P RN

A'.., .\.“ % '& :- 5
ehiyen e 1 N "‘c. k’ NN

- . ® '. 4 p
" : ae %0 oF

component 2
o
B
Soah
[
ol
-
e ¥
- -
- -P.
L
g
LY
F N

‘\ ‘- - =
b
. "_ v, * .rnll "n -
-10 " P - v H P .4
ot - B £ 7 | :1 . 3
e fe e ." °®
-20 * P ‘ ..: e
.. 2
o
< T igaE
$ Y
-30 * 1
-40 0
-40 =30 =20 -10 0 10 2 30 40
component 1

https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html
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https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html

Why dimensionality reduction?
Lower computation costs

» Suppose original dimension

is large like d = 100000 e s oo e
(e.g., images, DNA ﬂ P
sequencing, or text)

[ A CGTT GACTARETG Ac
*Ifwereducetok = 100 o LoenToe
dimenSionS, the training 4-5 million SNPs in human genome.

https://www.diagnosticsolutionslab.com/tests/genomicinsight

algorithm can be sped up by
1000X
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https://www.diagnosticsolutionslab.com/tests/genomicinsight

Why dimensionality reduction?
Underlying phenomena is on lower dimensional space
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Outline of Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction
2. Formal PCA problem: Min reconstruction

3. Derive PCA formulation for 1D

> Least error 1D projection is orthogonal
> Sum over all data points

4. Solution is based on truncated SVD
5. Equivalent problem: Max variance
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Math: Principal Component Analysis (PCA) can be
formalized as minimizing the linear reconstruction
error of the data using only k < d dimensions

» PCA can be formalized as
min 1X, — ZWT||%2 s.t. WITW =1,

ZERnXk,WERka

> where
X, =X—-1,uf € R"*? (centered input data)
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Review of linear algebra
and introduction to numpy Python library

> See Jupyter notebook, which can be opened
and run in Google Colab
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Math: Principal Component Analysis (PCA) can be
formalized as minimizing the linear reconstruction
error of the data using only k < d dimensions

min 1X, — ZWT||2 s.t. WITW = I,

ZERnXk,WERka
> Let’s stare at this equation some more ©

» What does the orthogonal constraint mean?

> Why minimize the squared Frobenius norm?
X = ZWTNE = Zi||lxi —zf W™, = Ziillx — Wzill3

> For analysis, let’s simplify to a single dimension
(i.,e., k = 1)

» > lx; — z;w||5 where z; is a scalar
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What is the best projection given a fixed
subspace (line in 1D case)?

> If we are given w, what is the best z (i.e. minimum
reconstruction error) for a given x?

. 2
»min|lx — zw
e ” “2 O x

?/

@

> The orthogonal projection!
— Ty — _
»z=x"w = ||x||||lw]|| cos @ = ||x|| cos &
. hyp -] .
> ZW is a scaled vector along the line defined by w

>z = ||x|| cos @ = hyp -
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Thus, we can simplify to only minimizing over W

zw:||w||,

n n
" - 2
min =1Z”xi —z;w||5 = w:||r£1v|1|r21=1zl:”xi — (xiTw)wHZ
i= L=

» Now we can return to the Frobenius norm:

- _ wT|l? _
w:||r$1vhr21=1”XC zZw HF where z = X.w

> What is zw! ? Have we seen something like this before?

> This is the best rank-1 approximation to X, which is given
by the SVD!

> W = vq and Zz = g;U4, Where g, U, v are the first singular
value, left singular vector and right singular vector respectively.
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For k = 1, the PCA solution is the top k right
singular vectors

> If X, = USVT, then the general solution is
"= I/1:k

> Remember: SVD is best k dim. approximation

. Compression=0.2% Rank=2, Compression=0.5% Rank=4, Compression=0.9%
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Intuition: Principal component analysis finds the best
linear projection onto a lower-dimensional space

min ||X, — sz||i

willwllz=1

where z = X.w

-3 -2 -1 0 1 2 3

2D to 1D projection: Red lines show the projection error onto 1D lines. PCA finds the line
that has the smallest projection error (in this example, when it aligns with the purple).

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Vinimizing reconstruction error (red lines) is
equivalent to maximizing the variance of projection
(spread of red points)

Min reconstruction error
Max variance

Max reconstruction error
Min variance

argmin || X, — sz||12:
wi|w|2=1

= argmax o2

where z = X.w wi||w|l,=1
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Derivation of equivalence will require 2 facts

1. The squared Frobenius norm is equal to the
trace of matrix times itself:

> ||Al|&2 = Tr(ATA) = Tr(447)

2. Optimization solutions are invariant when the
objective is multiplied by positive constant or a

constant is added,
»argmin f(W) = argminaf(W) +b, Va>0,b€eR
74 74




The PCA objective can be decomposed into the
original variance minus the variance of projection

> Minimize reconstruction.error
min || X, —ZW" ||z,
wwlTw=I,

| Xe — ZWT|E

>

r=Tr(X X}l —2ZWTXI + zZwT(zZwhHTh)
» = Tr(X X' — 227" + ZwT )

» = Tr(X Xl —2ZZT +77")

» = Tr(X X' — )

> = Tr(X.X:) —Tr(ZZ")

»=Tr(X/ X)) —Tr(Z"Z)

where Z = X W

|
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Equivalence is derived by manipulating
optimization problem

» argmin || X, — X W)WT||5
wwTw=r,

» = argmin — Tr[Z"Z]
W wTw=Iy

»= argmin —Tr[Z"Z]
wwlTw=r,

> = arg Tr(Z" Z]
wwlTw=r,

> = argmax

wWwTw=I,
(sum of variances in projected space)
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Equivalent solutions: The solution to both problems
is the top k right singular vectors of X,

> Minimize reconstruction error
min |1 X, — X)W |7
wwTw=I,
> Singular value decomposition (SVD) of X, = USVT
> Solution: W™ = V.

> Maximize variance of latent projection (equivalent solution)

max Tr(ZTz =2A2
WwWTW=I, (2°2) = 02,]

» Equivalent solution is the eigenvectors of XI X, = nX
» XTX, = (USVT)T(USVT) = (VSUT)(USVT) = VS(UTU)SVT VS2yT = QAQT
> Solution: W™ = Q4. = V14!
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Recap: Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction
2. Formal PCA problem: Min reconstruction

3. Derive PCA formulation for 1D

> Least error 1D projection is orthogonal
> Sum over all data points

4. Solution is based on truncated SVD

5. Alternative viewpoint: Max variance

> Derive equivalence
> Derive equivalent solutions




Demo of PCA via sklearn (time permitting)

» Random projections vs PCA projections

> Visualizations of
> Minimum reconstruction error
> Maximum variance
> Explained variance based on k

> Code examples
> Digits
> Eigenfaces
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Questions?




