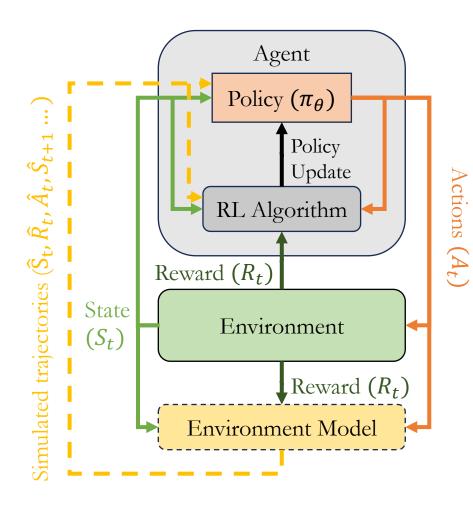
Reinforcement Learning

David I. Inouye

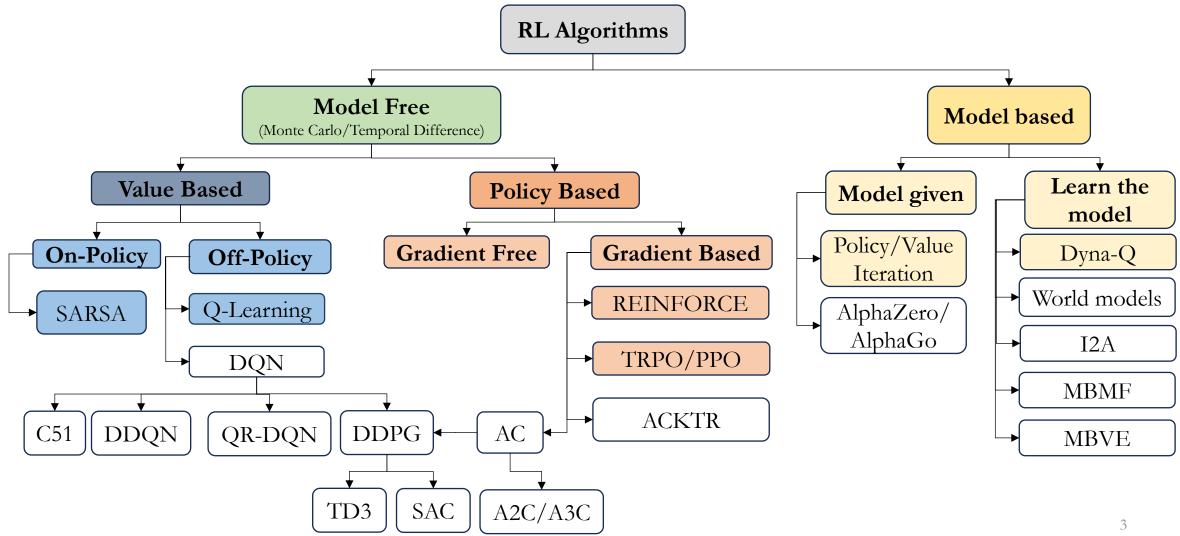
Credit: Souradip Pal (Spring 2024 GTA) drafted these slides.

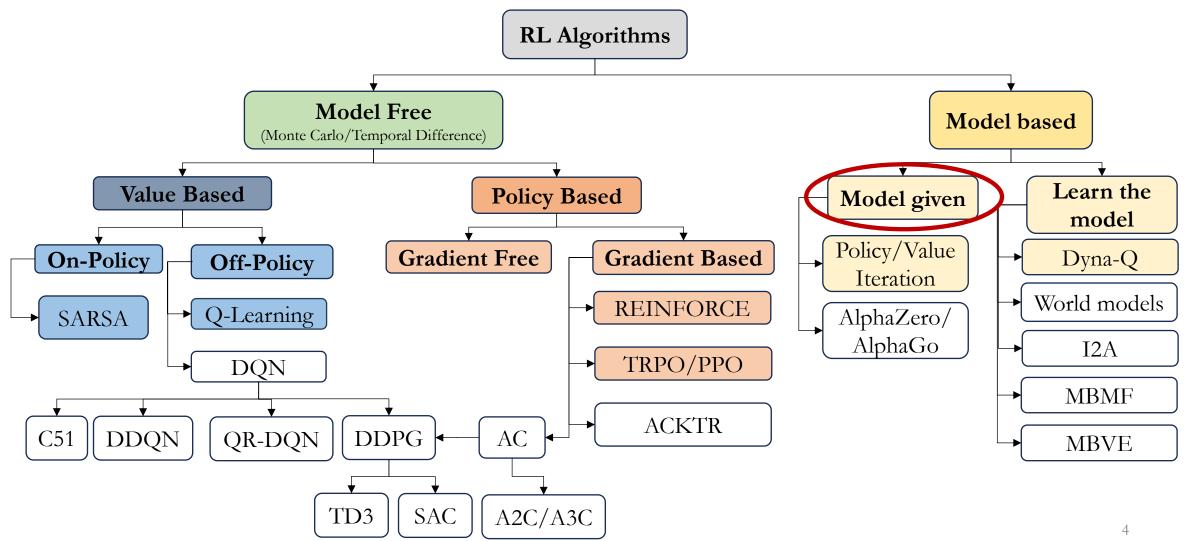
Elmore Family School of Electrical and Computer Engineering

Reinforcement Learning Algorithms Overview



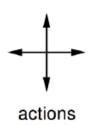
- Recall that our aim is to find the <u>optimal policy</u> which maximizes the <u>expected return</u> (discounted sum of future rewards)
- Policies can be compared based on value functions (policy ≈ value function), thus need a way to compute value function (**Prediction**) **Policy Evaluation**
- Starting with an arbitrary policy improve the policy to reach optimal policy (**Control**) **Policy Iteration**
 - Optimal policy can be constructed from optimal value function, improve value function **Value Iteration**
- What if environment(MDP) is unknown?
 - Estimate value function via. reward sampling (Model Free)
 - Or learn a model of the environment (Model Based), then compute value function (simulated experience)
- What if MDP has continuous or infinite states?
 - Use <u>parameterized function approximators</u> for value function (Value based) or policy(Policy Based)
 - Search or learn parameters (**gradient free** or **gradient based** searching)





(1.A) Policy **Evaluation** – How good is your policy?

- Evaluate a given policy π , estimate v_{π}
- Also known as a **Prediction** problem
 - Input: Known MDP $\langle S, A, P, R, \gamma \rangle$ and policy π
 - Output: Value function v_{π}



	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Undiscounted episodic MDP ($\gamma = 1$) r = -1on all transitions

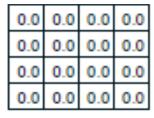
Terminal state is gray

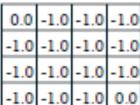
- Solution Iterative application of **Bellman** equation and dynamic programming
 - At each iteration k + 1, update $v_{k+1}(s)$ from $v_k(s')$ for all state s and successor states s'
 - $v_{k+1}(s) = \sum_{a} \pi(a|s) [r + \gamma \sum_{s'} p(s', r|s, a) v_k(s')]$

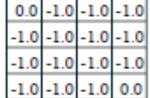
7	
A	u
	~

k = 1

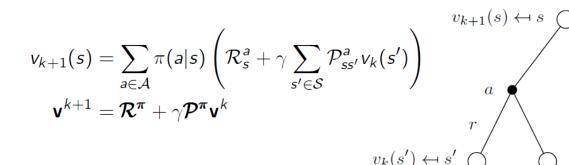
Random policy $\pi(a|s) = 0.25$ $\forall s \in \mathcal{S}, a \in \mathcal{A}$







0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0



(1.B.1) Policy **Iteration** – How to improve a policy?

k = 1

How to find the optimal policy?

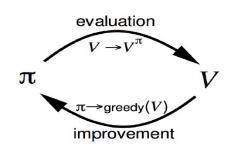
• Evaluate the policy π , estimate ν_{π}

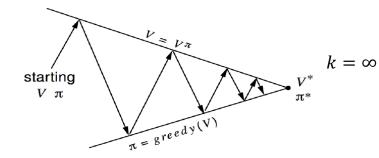
• Improve policy by acting **greedily** with respect to v_{π}

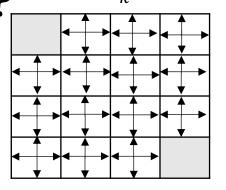
•
$$\pi'(s) = \underset{a}{\operatorname{arg max}} q_{\pi}(s, a) = \underset{a}{\operatorname{arg max}} (r + \gamma \sum_{s'} p_{ss'}^{a} v_{\pi}(s'))$$

•
$$q_{\pi}(s, \pi'(s)) = \max_{a} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

- If improvement stops, we have reached the optimal policy (also optimal value function)
 - $q_{\pi}(s, \pi'(s)) = \max_{a} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$
 - Bellman Optimality equation is satisfied
 - $v_{\pi}(s) = \max_{a} q_{\pi}(s, a) = v_{*}(s)$ for all s







0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-18	-14	0

 v_k

	4	4	—
	~	~	—
↑	^	—	+
		-	

0.0	-1.0	-2.0	-3.0
-1.0	-2.0	-3.0	-2.0
-2.0	-3.0	-2.0	-1.0
-3.0	-2.0	-1.0	0.0

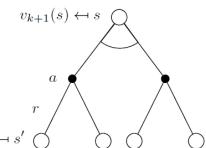
	4	\	~
†	1	*	\
↑	*	—	+
†	-	-	

0.0	-1.0	-2.0	-3.0
-1.0	-2.0	-3.0	-2.0
-2.0	-3.0	-2.0	-1.0
-3.0	-2.0	-1.0	0.0

(1.B.2) Value Iteration – Estimate optimal value function

- Find optimal value function v_* directly (get optimal policy π_* from v_*)
 - Unlike policy iteration, there is **no explicit policy**
 - Use <u>Bellman Optimality equation</u> to get $v_*(s)$ from the solution to subproblems $v_*(s')$
- Solution Iterative application of Bellman optimality equation and dynamic programming
 - At each iteration k + 1, update $v_{k+1}(s)$ from $v_k(s')$ for all state s and successor states s'
 - $v_{k+1}(s) = \max_{a} [r + \gamma \sum_{s'} p(s', r|s, a) v_k(s')]$

$$\begin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right) \\ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$



0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

k = 1

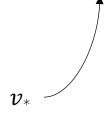
 $k = \infty$

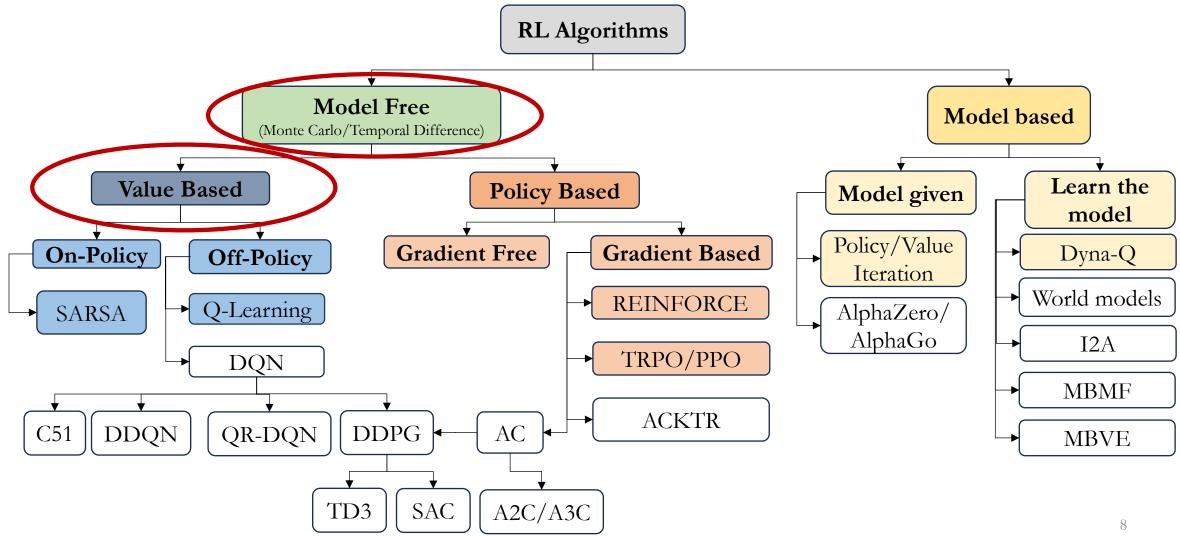
0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	—	+	—
†		+	→
↑	$\qquad \qquad $		+
	-	→	

 π_*

0.0	-1.0	-2.0	-3.0
-1.0	-2.0	-3.0	-2.0
-2.0	-3.0	-2.0	-1.0
-3.0	-2.0	-1.0	0.0





(2.A.1) Monte Carlo Policy **Evaluation** - Estimate value function for unknown MDPs (Model Free Prediction)

- No knowledge of MDP transitions or rewards
 - Observe the environment by sampling trajectories
 - Learn directly from experience (multiple episodes)
- Estimate value function
 - Take the mean of the returns observed
 - Consider complete episodes
- Assumptions
 - Applicable to episodic MDPs
 - All episodes must terminate (finite horizon MDPs)

First(Every) -Visit MC Evaluation

- Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$
- Loop
 - Sample episode following policy π $(S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T)$
 - For each state *s*
 - Define $G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$ $\gamma^{T-1}R_T$ as return from time step \boldsymbol{t} onwards where \boldsymbol{t} is the **first(every) time** the state \boldsymbol{s} is visited until \boldsymbol{T} (the end of the episode)
 - Increment counter of total first(every) visits N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_t$
 - Update estimate $\hat{v}_{\pi}(s) = G(s)/N(s)$

(2.A.2) Monte Carlo Policy **Evaluation** - Estimate value function for unknown MDPs (Model Free Prediction)

- MC updates can be done incrementally
 - Uses formula to calculate incremental mean μ_k of a sequence $x_1, x_2, ..., x_k$
 - $\mu_k = \mu_{k-1} + \frac{1}{k}(x_k \mu_{k-1})$
 - $\hat{v}_{\pi}(s) \leftarrow \hat{v}_{\pi}(s) + \frac{1}{N(s)} (G_t \hat{v}_{\pi}(s))$
- Estimate **state-action value function** (q)
 - $\hat{q}_{\pi}(s,a) \leftarrow \hat{q}_{\pi}(s,a) + \frac{1}{N(s,a)} (G_t \hat{q}_{\pi}(s,a))$
 - $\hat{q}_{\pi}(s,a) \leftarrow \hat{q}_{\pi}(s,a) + \alpha (G_t \hat{q}_{\pi}(s,a)),$ α can be viewed as **step size** or learning rate
- Limitations
 - High variance estimator, require lots of data
 - Episode must end before data from episode can be used to update

Every-Visit Incremental MC

- Initialize N(s, a) = 0, $G(s, a) = 0 \ \forall s \in S$, $a \in A$
- Loop
 - Sample episode following policy π $(S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T)$
 - For each state-action pairs (s, a)
 - Define $G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$ $\gamma^{T-1} R_T$ as return from time step \boldsymbol{t} onwards where \boldsymbol{t} is **every time** the state \boldsymbol{s} is visited and action \boldsymbol{a} is taken until \boldsymbol{T} (the end of the episode)
 - Increment counter of total every visits N(s,a) = N(s,a) + 1
 - Update estimate $\hat{q}_{\pi(S,a)} = \hat{q}_{\pi}(s,a) + \frac{1}{N(s,a)} (G_t \hat{q}_{\pi}(s,a))$

(2.B) Monte Carlo Policy **Optimization** - Estimate optimal value function for unknown MDPs (Model Free Control)

- No knowledge of MDP transitions or rewards
 - Observe the environment by sampling trajectories
 - Learn directly from experience (multiple episodes)
- Estimate the **optimal value function**
 - Use **Policy Iteration** approach
 - MC method in policy evaluation step
 - Greedy policy improvement on action-value function q
 - $\pi'(s) = \underset{a}{\operatorname{arg max}} q(s, a)$
- Caveats
 - Greedy policy improvement on state value function (v) not possible, requires MDP model (i.e., only applicable to action-value function q)
 - Might not explore all states Can be solved using **stochastic policy (ε-greedy)** to encourage continuous exploration

Deterministic Policy Improvement

- For each state $s \in \mathcal{S}$ (s in episode)
 - $\pi(s) = \arg \max_{a} \hat{q}(s, a)$

€-Greedy Policy Improvement

- For each state $s \in \mathcal{S}$ (s in episode)
 - $a_* = \arg\max \hat{q}(s, a)$

•
$$\pi(s,a) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}|}, & \text{if } a = a_* \\ \frac{\epsilon}{|\mathcal{A}|}, & \text{otherwise} \end{cases}$$

(3.A) Temporal Difference(TD) **Learning** - Estimate value function for unknown MDPs (Model Free Prediction)

- Combination of Monte Carlo & dynamic programming methods
 - Immediately update estimate of v after each observed (s, a, r, s') tuple
 - TD learns from <u>incomplete episodes</u>, by bootstrapping
- Estimate value function
 - Update value toward estimated target return
 - TD target: $R_{t+1} + \gamma \hat{v}(S_{t+1})$
 - TD error : $\delta_t = [R_{t+1} + \gamma \hat{v}(S_{t+1})] \hat{v}(S_t)$
- Advantages
 - Lower variance than MC (although biased estimator)
 - Can be used in episodic or infinite-horizon non-episodic MDPs

TD(0)/1-step TD Learning

- Initialize $\hat{v}_{\pi}(s) = 0 \ \forall s \in \mathcal{S}$, step size $\alpha \in (0, 1)$
- Loop
 - Sample state S_0
 - For each step *t* in episode until termination
 - Take action A_t based on policy π at S_t
 - Observe reward R_{t+1} & next state S_{t+1}
 - Update estimate $\hat{v}_{\pi}(S_t) \leftarrow \hat{v}_{\pi}(S_t) + \alpha([R_{t+1} + \gamma \hat{v}_{\pi}(S_{t+1})] \hat{v}_{\pi}(S_t))$
 - $S_t \leftarrow S_{t+1}$

(3.B.1) Model-Free Control with TD Methods

- SARSA (On-Policy TD Learning)

- Uses **TD** learning approach for policy evaluation
 - Estimate q of the policy π being followed
 - ϵ -Greedy policy improvement on actionvalue function q
- Estimate action value function
 - Update value toward estimated target return given $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$ transition tuple (hence called **SARSA**)
 - SARSA target: $R_{t+1} + \gamma \widehat{q}_{\pi}(S_{t+1}, A_{t+1})$
- Advantages
 - On-policy algorithm
 - Converges to the optimal action-value function. $\hat{q}_{\pi}(s,a) \rightarrow q_{*}(s,a)$

SARSA

- Initialize $\hat{q}(s, a) \ \forall s \in \mathcal{S}, a \in \mathcal{A}$ arbitrarily, $\hat{q}(s, a) = 0$ if s is terminal state, $\alpha \in (0, 1)$
- Set initial ϵ -greedy policy π randomly
- Loop
 - Sample state S_0
 - Sample action A_0 at S_0 based on policy π
 - For each step *t* in episode
 - Take action A_t , observe R_{t+1} and S_{t+1}
 - Choose action A_{t+1} at S_{t+1} based on π
 - Update estimate $\hat{q}_{\pi}(S_{t,A_t}) \leftarrow \hat{q}_{\pi}(S_t, A_t) + \alpha([R_{t+1} + \gamma \hat{q}_{\pi}(S_{t+1}, A_{t+1})] \hat{q}_{\pi}(S_t, A_t))$
 - Update policy $\pi(S_t)$ based on ϵ -greedy
 - $S_t \leftarrow S_{t+1}, A_t \leftarrow A_{t+1}$

On-policy versus Off-Policy Learning & Control

- On-policy learning
 - Learn to estimate and evaluate a policy π from experience obtained from following that policy (same policy for prediction and control)
 - Direct experience
- Off-policy learning
 - Learn to estimate and evaluate a policy π^t (called <u>target policy</u>) using experience gathered from following a different policy (called <u>behavior policy</u> π^b)
 - Indirect experience, learn from observing humans or other agents
 - Re-use experience generated from old policies
 - Learn about optimal policy while following exploratory policy
 - Learn about multiple policies while following one policy
- Need importance sampling corrections on returns along whole episode

•
$$G_t^{\pi^t/\pi^b} = \left(\frac{\pi^t(A_t|S_t)}{\pi^b(A_t|S_t)} \frac{\pi^t(A_{t+1}|S_{t+1})}{\pi^b(A_{t+1}|S_{t+1})} \dots \frac{\pi^t(A_T|S_T)}{\pi^b(A_T|S_T)}\right) G_t$$

(3.B.2) Model-Free Control with TD Methods

- Q Learning (Off-Policy TD Learning)

- Q-learning is an **off-policy** RL algorithm on action-values *q*
- Maintain state-action *q* estimates for bootstrapping
 - Use the value of the best future action
 - Stochastic approximation like SARSA
- Estimate action value function
 - Next action is chosen using behavior policy $A_{t+1} \sim \pi_b(S_t)$
 - Consider all alternative successor action $A' \sim \pi(S_t)$, take best A' for update
 - Q-learning target: $R_{t+1} + \gamma \max_{A'} \hat{q}(S_{t+1}, A')$
- Advantages
 - No importance sampling required
 - Allows both behavior and target policies to improve

Q-Learning

- Initialize $\hat{q}(s, a) \ \forall s \in \mathcal{S}, a \in \mathcal{A}$ arbitrarily, $\hat{q}(s, a) = 0$ if s is terminal state, $\alpha \in (0,1)$
- Set initial ϵ -greedy policy π^b w.r.t \widehat{q}
- Loop
 - Sample state S_0
 - Set ϵ -greedy policy π_b w.r.t \hat{q}
 - Sample action A_0 at S_0 based on policy π^b
 - For each step *t* in episode
 - Take action A_t , observe R_{t+1} and S_{t+1}
 - Update estimate $\hat{q}(S_{t+1}, A_{t+1}) \leftarrow \hat{q}(S_t, A_t) + \alpha([R_{t+1} + \gamma \max_{A'} \hat{q}(S_{t+1}, A')] \hat{q}(S_t, A_t))$
 - Update policy π based on ϵ -greedy on \hat{q}
 - $S_t \leftarrow S_{t+1}$

(4.A) Value Function Approximation – Scaling up RL methods

- So far, we have been working with the tabular representation of the value functions v(s) or q(s,a) and policy $\pi(a|s)$ for finite and discrete MDPs
- But MDPs can be very large, need to scale up for large MDPs
 - Too many states and/or actions to store in memory, state space can be continuous
 - Too slow to learn the value of each state individually
- Solution Estimate value function with **function approximation**
 - $\hat{v}(s, \theta) \approx v_{\pi}(s)$ or $\hat{q}(s, a, \theta) \approx q_{\pi}(s, a)$ where the value function is parameterized by θ
 - Update parameter θ using MC and TD methods (supervised learning)
 - Generalizes to unseen states and/or actions
- Common Function Approximators (consider only differentiable ones)
 - Linear combination of features
 - Neural Networks

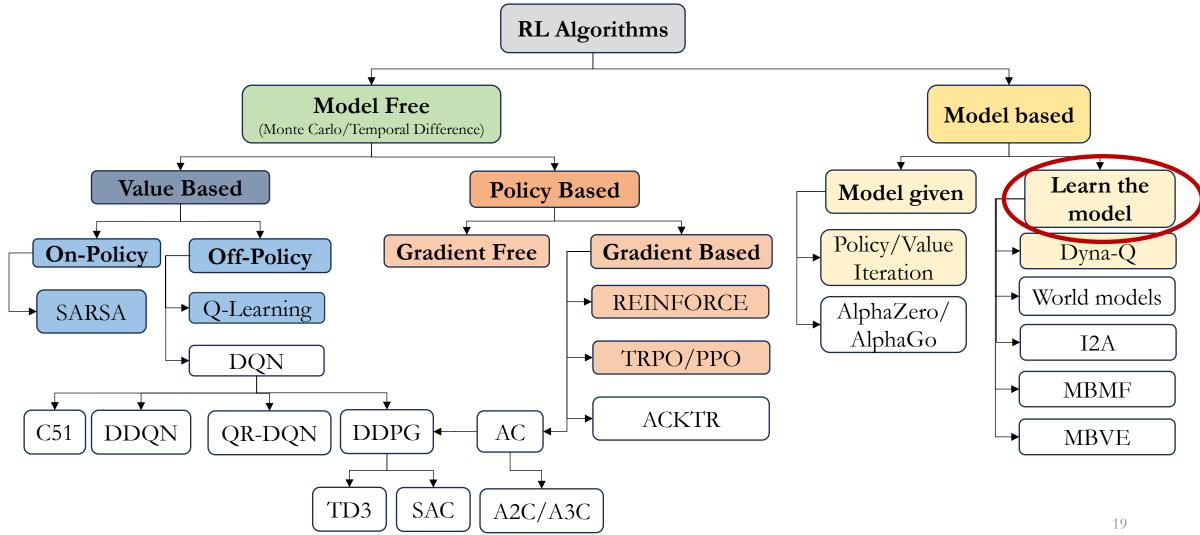
- Nearest Neighbors
- Decision Trees

(4.A.1) Linear Value Function Approx. by Gradient Descent

- Represent state by a feature vector $\mathbf{x}(s) = [x_1(s), x_2(s), ..., x_n(s)]^T$
- Represent value function by a linear combination of features
 - $\hat{v}(s, \mathbf{\theta}) = \mathbf{x}(s)^T \mathbf{\theta}$, where $\mathbf{\theta} = [\theta_1, \theta_2, ..., \theta_n]^T$
- Find parameter vector $\boldsymbol{\theta}$ minimizing the mean-squared error between approximate value function $\hat{v}(s, \boldsymbol{\theta})$ and true value function $v_{\pi}(s)$ (value objective function)
 - $J(\mathbf{\theta}) = \mathbb{E}_{\pi} \left[\left(v_{\pi}(s) \hat{v}(s, \mathbf{\theta}) \right)^{2} \right]$
 - $J_{\text{linear}}(\mathbf{\theta}) = \mathbb{E}_{\pi}[(v_{\pi}(s) \mathbf{x}(s)^T \mathbf{\theta})^2]$ (for linear value function approx.)
- Apply gradient descent (or SGD) to find local minimum by updating parameters
 - Update rule: $\Delta \mathbf{\theta} = -\frac{1}{2} \alpha \nabla J(\mathbf{\theta}) = \alpha \mathbb{E}_{\pi} [(v_{\pi}(s) \hat{v}(s, \mathbf{\theta})) \nabla_{\mathbf{\theta}} \hat{v}(s, \mathbf{\theta})]$
 - SGD update rule: $\Delta \theta = \alpha \left[\left(v_{\pi}(s) \hat{v}(s, \theta) \right) \nabla_{\theta} \hat{v}(s, \theta) \right]$
 - SGD update rule for linear value function approx.: $\Delta \theta = \alpha \left[(v_{\pi}(s) \hat{v}(s, \theta)) \mathbf{x}(s) \right]$
- Stochastic gradient descent converges to global optimum
- Seems great...but we don't know $v_{\pi}!$

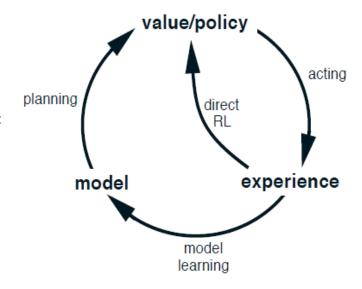
(4.A.1) Incremental Prediction/Control Algorithm – MC/TD with Function Approx.

- In practice, we don't have true value function v_{π} for prediction, we only have rewards through environment interaction, thus substitute target for v_{π}
 - For MC, the target is the return G_t
 - $\Delta \mathbf{\theta} = \alpha \left[\left(\mathbf{G}_t \hat{v}(S_t, \mathbf{\theta}) \right) \nabla_{\mathbf{\theta}} \hat{v}(S_t, \mathbf{\theta}) \right]$
 - For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \theta)$
 - $\Delta \theta = \alpha \left[\left(R_{t+1} + \gamma \hat{v}(S_{t+1}, \theta) \hat{v}(S_t, \theta) \right) \nabla_{\theta} \hat{v}(S_t, \theta) \right]$
- In control, approximate action-value function $\hat{q}(s, a, \theta)$, substitute target for true value of q_{π}
 - For MC, the target is the return G_t
 - $\Delta \mathbf{\theta} = \boldsymbol{\alpha} \left[\left(\mathbf{G}_t \hat{q}(S_t, A_t, \mathbf{\theta}) \right) \nabla_{\mathbf{\theta}} \hat{q}(S_t, A_t, \mathbf{\theta}) \right]$
 - For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \theta)$
 - $\Delta \theta = \alpha \left[\left(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \theta) \hat{q}(S_t, A_t, \theta) \right) \nabla_{\theta} \hat{q}(S_t, A_t, \theta) \right]$
- (4.B) Approximate Policy Iteration Do approximate policy evaluation using $\hat{q}(s, a, \theta) \approx q_{\pi}$ followed by ϵ -greedy policy improvement



Model-Based Reinforcement Learning – Integrating Learning and Planning

- Previous approach Model Free RL
 - No model (unknown transition function $\mathcal P$ and reward function $\mathcal R$)
 - Learn value function/policy directly from experience
- New Approach Model Based RL
 - First learn(estimate) model from experience
 - Plan for optimal value function/policy using learned model
 - Integrate learning and planning into a single architecture
 - Possible to efficiently learn model using supervised learning methods
 - Can understand model uncertainty
 - Model-based RL is only as good as the estimated model. When the model is inaccurate, planning process will compute a suboptimal policy.



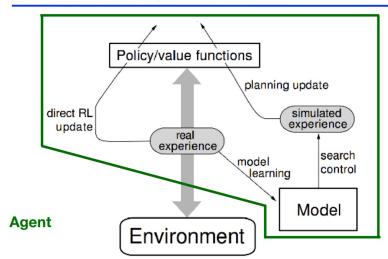
Model
$$\mathcal{M}_{\eta} \xrightarrow{represents} \text{MDP} \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

 $\mathcal{M}_{\eta} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle \ (\eta \text{ is the parameter})$
 $\mathcal{P}_{\eta} \approx \mathcal{P} \quad \mathcal{R}_{\eta} \approx \mathcal{R}$

(5.A/B) Integrated Architectures – Dyna (Dyna-Q Algorithm)

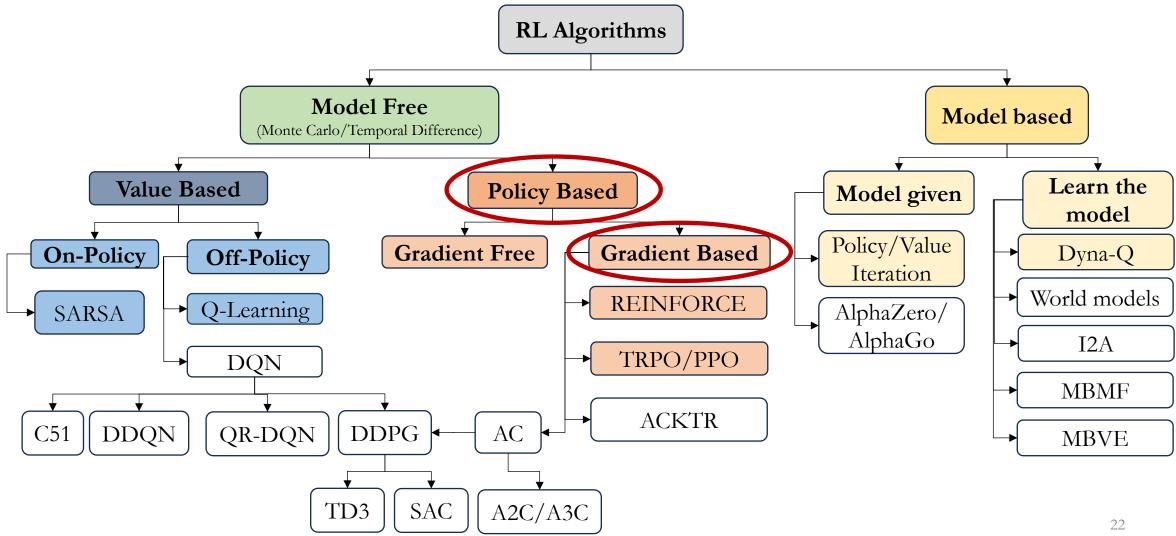
- Dyna
 - Learn model from real experience
 - Learn and plan value function/policy from both real & simulated experience (Q-Learning)
- Involves one-step interaction(acting) with the environment and *n* steps planning
- Store experience, get better policy with fewer environment interactions

The Dyna Architecture



Tabular Dyna-Q

- Initialize $\hat{q}(s, a)$ and $\mathcal{M}(s, a) \forall s \in \mathcal{S}, a \in \mathcal{A}$
- Loop
 - Sample current state S_t
 - Sample action A_t at S_t based on ϵ -greedy on \hat{q}
 - Take action A_t , observe R_{t+1} and S_{t+1}
 - $\hat{q}(S_{t+1}, A_t) \leftarrow \hat{q}(S_t, A_t) + \alpha([R_{t+1} + \gamma \max_{A'} \hat{q}(S_{t+1}, A')] \hat{q}(S_t, A_t))$
 - $\mathcal{M}(S_t, A_t) \leftarrow R_{t+1}, S_{t+1}$
 - Loop *n* times
 - Sample random state **s**
 - Sample random previous action a at s
 - $r,s' \leftarrow \mathcal{M}(s,a)$
 - $\hat{q}(s,a) \leftarrow \hat{q}(s,a) + \alpha([r + \gamma \max_{a'} \hat{q}(s',a')] \hat{q}(s,a))$



Policy-Based RL – Policy Gradient Methods

- Previously, we approximated the value functions using parameters $\boldsymbol{\theta}$
 - Obtained policy from value function $\hat{v}(s, \theta)$ or $\hat{q}(s, a, \theta)$ using ϵ -greedy
- Now, directly parameterize and learn the policy $\pi_{\theta}(s, a) = \mathbb{P}[a|s, \theta]$
 - Model-Free RL, better convergence properties, can learn stochastic policies
 - Effective in high-dimensional or continuous action spaces
 - Typically converge to a local rather than global optimum
 - Evaluating a policy is typically inefficient and high variance
- Given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ which maximizes $J(\theta)$
 - Policy Objective Function $J(\theta)$ Measures quality of policy π_{θ}
 - Episodic environments: $J(\boldsymbol{\theta}) = v_{\pi_{\boldsymbol{\theta}}}(s_1, \boldsymbol{\theta})$ (also called start value)
 - Continuing environments: $J(\theta) = \sum_{s} d_{\pi_{\theta}}(s) v_{\pi_{\theta}}(s, \theta)$ (also called average value), $d_{\pi_{\theta}}(s)$ is the stationary distribution of Markov chain for π_{θ}
- Can use gradient free optimization, but greater efficiency possible using gradient
- Policy Gradient Methods:
 - Search for local maximum by <u>ascending</u> the policy gradient with θ : $\Delta\theta = \alpha \nabla_{\theta} J(\theta)$

(6.B) Monte Carlo Policy Gradient – REINFORCE

- Policy Gradient Theorem
 - For any differentiable policy and any policy objective function

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} [\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(s, a) q_{\pi_{\boldsymbol{\theta}}}(s, a)]$$

- $\nabla_{\theta} \log \pi_{\theta}(s, a)$ is called the score function
- Many choices of differentiable policy π_{θ} Softmax, Gaussian, Neural Networks
- Monte Carlo Policy Gradient
 - Update parameters by stochastic gradient ascent, use policy gradient theorem
 - Use return G_t as an unbiased estimate of $q_{\pi_{\theta}}(S_t, A_t)$
 - $\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(S_t, A_t) G_t$
- MC policy gradient has high variance
 - Use actor-critic methods to reduce variance

REINFORCE

- Initialize policy parameters θ arbitrarily
- Loop
 - Sample episode following policy π_{θ} $(S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T)$
 - For t = 1 to T 1

•
$$G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

 $\gamma^{T-1} R_T$

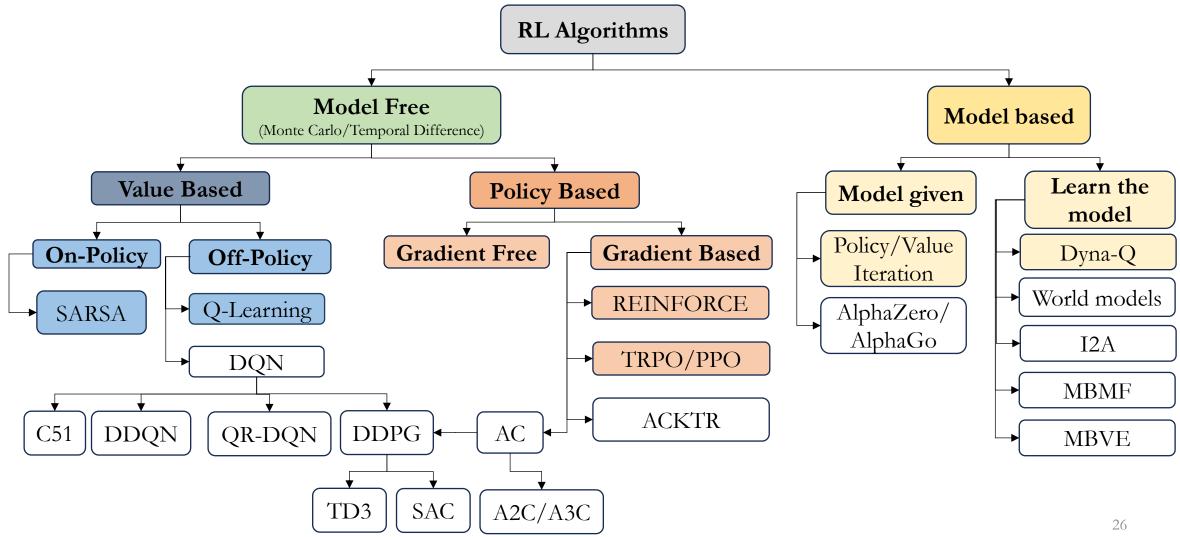
- $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(S_t, A_t) G_t$
- Return $\boldsymbol{\theta}$

(7.B) Advanced Policy Gradient Algorithms – Trust Region Methods (TRPO/PPO)

• General policy gradient algorithms try to solve the optimization problem

$$\max_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} [\sum_{t=0}^{\infty} \gamma^t R_t]$$

- Use stochastic gradient ascent on policy parameters $oldsymbol{ heta}$ using policy gradient g
 - $g = \nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} [\sum_{t=0}^{\infty} \gamma^t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (A_t | S_t) \mathbf{A}_{\pi_{\boldsymbol{\theta}}} (S_t, A_t)]$
 - Advantage function $A_{\pi_{\theta}}(s, a) = q_{\pi_{\theta}}(s, a) v_{\pi_{\theta}}(s)$, relative **advantage** of an action i.e. how much better to take action a in state s over randomly selecting any other action and following π_{θ} after
- However, its sample efficiency is poor as it searches in **parameter space** instead of policy space. Also, the method is dependent on step size.
- Trust Region Methods Proximal Policy Optimization(PPO)
 - Define $\mathcal{L}_{\pi}(\pi') \approx J(\pi') J(\pi)$ ($\pi' \to \text{new policy}, \pi \to \text{old policy}$), improvement over old policy
 - Update $\boldsymbol{\theta}$ incrementally, approximately penalize policies from changing too much between steps
 - Adaptive KL Penalty: $\theta_{k+1} = \underset{\mathbf{q}}{\operatorname{argmax}} \mathcal{L}_{\theta_k}(\mathbf{\theta}) \beta_k KL(\mathbf{\theta}||\mathbf{\theta}_k), \beta_k$ is the penalty coefficient
 - Clipped Objective: $\mathbf{\theta}_{k+1} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathcal{L}_{\mathbf{\theta}_{k}}^{CLIP}(\mathbf{\theta})$ where $\mathcal{L}_{\mathbf{\theta}_{k}}^{CLIP}(\mathbf{\theta}) = \mathbb{E}_{\tau \sim \pi_{k}} \left[\sum_{t=0}^{T} \left[\min(r_{t}(\mathbf{\theta}) \widehat{\mathbf{A}}_{\pi_{k}}(S_{t}, A_{t}), \operatorname{clip}(r_{t}(\mathbf{\theta}), 1 \epsilon, 1 + \epsilon) \widehat{\mathbf{A}}_{\pi_{k}}(S_{t}, A_{t}) \right] \right],$ $r_{t}(\mathbf{\theta}) = \pi_{\theta}(A_{t}|S_{t}) / \pi_{\theta_{k}}(A_{t}|S_{t}), \epsilon \text{ is a hyperparameter}$



RL Application: Reinforcement Learning using Human Feedback - Finetuning ChatGPT

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

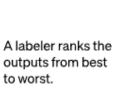
A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.



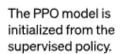
This data is used to train our reward model.

Explain reinforcement

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

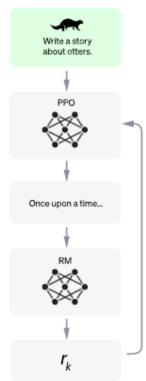
A new prompt is sampled from the dataset.



The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



Summary of RL Algorithms

- Agent attempts to find **optimal policies** with highest returns via. environment interaction
 - Planning/Prediction evaluates a given policy and Learning/Control finds the optimal policy
 - Policy Iteration for control involves value function estimation and policy improvement steps
- Model-Free learning does not require model of the environment (MDP)
 - Monte Carlo (MC) estimates the future returns by sampling returns via. environment interaction
 - Temporal Difference (TD) estimates the future returns in a more online manner
 - SARSA (On-policy) and Q-Learning (off-policy) uses MC/TD for model-free control
- Model-Based learning like **Dyna-Q** estimates the model of the environment (MDP)
- The <u>state-value</u>, <u>action-value functions</u> and <u>policies</u> can be approximated for large MDPs using neural networks or other parametric function approximators
- Policy gradient methods directly find optimal policies using gradient descent
- In practice, RL algorithms can be used in various applications like stock trading, self-driving cars and even systems like ChatGPT

References

- Based on the excellent RL book by Sutton and Barto
 - http://incompleteideas.net/book/the-book-2nd.html
- Some content borrowed from David Silver's Lecture Notes
 - https://www.davidsilver.uk/teaching/
- Additional help from Stanford CS234 course by Emma Brunskill
 - https://web.stanford.edu/class/cs234/modules.html
- OpenAI Blogs
 - https://openai.com/blog/chatgpt
 - https://spinningup.openai.com/en/latest/index.html