Reinforcement Learning

David I. Inouye

Credit: Souradip Pal (Spring 2024 GTA) drafted these slides.

? PURDUE Elmore Family School of Electrical

UNIVERSITY and Computer Engineering

Reinforcement Learning Algorithms Overview

* Recall that our aim is to find the optimal policy
(Agent) which maximizes the expected return (discounted

sum of future rewards)
I 1 . . .
Policy (1rg) * Policies can be compared based on value functions
Policy (policy = value function), thus need a way to compute
Update value function (Prediction) — Policy Evaluation
[RL Algotithm J * Starting with an arbitrary policy improve the policy to
_ 2 - reach optimal policy (Control) — Policy Iteration
Reward (R;) * Optimal policy can be constructed from optimal value
L function, improve value function - Value Iteration
[Environment] * What if environment(MDP) is unknown?
L * Estimate value function via. reward sampling (Model Free)
Reward (R;) * Orlearn a model of the environment (Model Based), then

R ERAEEELEEEEEE LS ‘ compute value function (simulated experience)

e What if MDP has continuous or infinite states?

* Use parameterized function approximators for value
function (Value based) or policy(Policy Based)

* Search or learn parameters (gradient free or gradient
based searching)

Categorizing RLL Algorithms

Ve

RL Algorithms }
) |

v
N
Model Free
(Monte Carlo/Temporal Difference) |

v
* Poticy Based |
|

v v v) v
—{On-Policy){ Off-Policy | [Gradient Free | —{ Gradient Based |
o sarsa | | Q-Learning | " REINFORCE

 DQN | { TRPO/PPO
|
* * - : | ACKTR
| cs1)| DDQN | [QR_DQN][DDPG \

—

D3 || sac | azc/asc)

[Model based J

2

v

4[Model given J Learn the
model |
[Policy/Value i i Dyna-Q |
[teration

.

J

.

AlphaGo

(AlphaZero/ |

J

: World models

I2A

MBMF

MBVE

2
J

David 1. Inouye, Purdue University

Categorizing RLL Algorithms

Ve

RL Algorithms }
) |

v v
[Model Free [Model based J
(Monte Carlo/Temporal Difference) |
| v | v .
| model
v , v y , y —— \ , <
—{ On-Policy | Off-Policy] [Gradient Free] Gradient Based] Policy/Value Dyna-Q
)) | Iteration)) .
X : . REINFORCE. | - N World models
SARSA | [Q-Learning | , AlphaZero/ \ 1
. AlphaGo | I2A
DQN | » TRPO/PPO | . ;
|
; * = * | ACKIR | -
st][DDON | | Qr-DON | | DDPG \ J T MBVE

—

D3 || sac | azc/asc)

4

David 1. Inouye, Purdue University

(1.A) Policy Evaluation — How good 1s your policy?

* Evaluate a given policy T, estimate Uy ol s episggch;/fg;n(;/ei n
. . A .
* Also known as a Prediction problem . s s s |7 i 1
. transit
* Input: Known MDP (S, A, P, R,y) and policy 7 | N A on all transitions
* Output: Value function vy actions o hs i Terminal state is gray
* Solution - Iterative application of Bellman ~olooloolos
equation and dynamic programming - 00| 00/ 0.0[00
* Ateach iteration k + 1, update v, 1(S) from v, (s") ' 0.0| 0.0/ 0.0/ 00
for all state s and successor states S’ R(anld(;m P(())hzcg 0.0| 0.0/ 0.0{ 0.0
mwlals) = u.
s (5) = Za (@) [+ Zap(s',7ls, v(sh] L= 02 N
k=1 -1.0|-1.0(-1.0|-10

Vikr1(s) = Z 7(als) (Rﬁ + 7 Z P vk(sl)>

acA s'eS
vk+1 — Rﬂ' + “,vPﬂVk

Image Credit: Sutton and Barto book, Example 4.1, pp. 76.

-1.0|-1.0|-1.0]-1.0
-1.0/-1.0|-1.0] 0.0

0.0{-1.7]-2.0[-2.0
F=2 -1.7|-2.0|-2.0|-2.0
-2.0|-2.0[-2.0]-1.7
-2.0|-2.0/-1.7/ 0.0

-
o)

David L. Inouye, Purdue University

(1.B.1) Policy Iteration — How to improve a policy?

[] [] n vk
How to find the optimal policy ? <
< > > 0 -14 | -20 | -22
* Given a policy 7, find optimal policy 7T« (Control) PR DR B P 0 I B P T
* Evaluate the policy 7, estimate vy 1 v | ¥ D O I e
. . . . - A A
* Improve policy by acting greedily with respect to vy el | 20 | -20 | -18 | -14
- '(s) = argflax qr(s,a) = arg‘{nax(r + st’pgSIvn(S,)) < Tl 22 | 18 | c14 | o
* qTL'(Si T[’(S)) = maxX C[n(S, a) = CITE(S»T[(S)) = vr(S)
a e 0.0 |-1.0 |20 |-30
* If improvement stops, we have reached the optimal 1.7
: - - 1.0 | 20 |30 | 20
policy (also optimal value function) =9 3|
* n(s,7(5)) = Max gr(s, @) = G(5,7(5)) = v (s) i ENIEEEE
* Bellman Optimality equation 1s satisfied b o 3.0 | -20 | -1.0 | 0.0
« v.(s) = max q-(s,a) = v,(s) forall s
|l 0.0 |-1.0 |20 |-30
evaluation A ﬂ
m) ! 1.0 [-20 |-3.0 |20
— k = oo v
tarti . Pl _ _ _ _
7T 1V4 starting v 1y 2.0 [3.0 | -20 | -1.0
e g o 3.0 [-20 [-1.0 | 0.0
improvement

6

Im redit: Sutton and Bart . o .
age Credit: Sutton and o David L. Inouye, Purdue University

(1.B.2) Value Iteration — Estimate optimal value tfunction
* Find optimal value function v, directly (get — o —T

optimal policy T« from)

* Unlike policy iteration, there is no explicit policy k=1

0 0 0 0

0 0 0 0

* Use Bellman Optimality equation to get U,(S) PR R e

from the solution to subproblems v, (s’) -
* Solution - Iterative application of Bellman 00 | -10 | 10 | 1.0 — |
optimality equation and dynamic programming . 10 |0 fao |0 T T .
* At each iteration k + 1, update v 41(S) from I WO IRV VTN RETN) P r
v, (s") for all state S and successor states S’ R ED RN N N
* Vesa(s) = maxlr +y Ty, p(s', 15,) (5]
00 |-10 | -2.0 | -3.0
Vkr1(s) = max (Rﬁ + 7 Z P v (s)) 1.0 |20 | -3.0 | 20 ..
s'es 20 |30 | 20 | 1.0

Vi1 = max R? + P

acA -3.0 | -20 | -1.0 | 0.0

Image Credit: Sutton and Barto . o .
& David L. Inouye, Purdue University

Categorizing RLL Algorithms

[RL Algorithms]
|

v

Model Free
(Monte Catlo/Temporal Difference)

Q*

—_On-Policy | . Off-Policy]

v
[Policy Based]
v l v
| Gradient Free | —| Gradient Based |

o sarsa | | Q-Learning | "(REINFORCE |
DQN | »__ TRPO/PPO
|
: v 3 !

[CSl][DDQN] [QR_DQN][DDPG ACKTR

—

D3 || sac | azc/asc)

4[Model given J

[Model based]

2

.

(Policy/Value |

Iteration

J

v

Learn the |
model

Dyna-Q

J
N

.

(AlphaZero/ |

AlphaGo

J

: World models

I2A

MBMF

MBVE

8

David I. Inouye, Purdue University

(2.A.1) Monte Carlo Policy Evaluation - Estimate value
function for unknown MDPs (Model Free Prediction)

* No knowledge of MDP transitions / First(Every) -Visit MC Evaluation\

or rewards * Initialize N(s) = 0,G(s) =0Vs €S

* Observe the environment by sampling

trajectories * Loop
) . : : * Sample episode following policy 7
* Learn directly from experience (multiple 4
C . d (SOIAOJRIISLAL RZ; -;ST_]_; T—1» RT)
pisodes)
)) * For each state s
e Estimate value function e Define Gy = Ry + YRypq + V2Rpsy + - -
* Take the mean of the returns observed YT~1Ry as return from time step &
* Consider complete episodes onwards where t is the first(every) time
¢ A ’ the state § is visited until T (the end of the
SSU.mpthﬂS sptisadl)
* Qﬁphc.abée to eplsodlc MD Pif’ _ * Increment counter of total first(every)
. episodes must terminate (finite ssits N(s) = N(s) + 1
hotizon MDPs) visits N(s) = N(s)

* Increment total return G(s) = G(S) + G;
\ * Update estimate U(s) = G(s)/N(s)

(2.A.2) Monte Carlo Policy Evaluation - Estimate value
function for unknown MDPs (Model Free Prediction)

* MC updates can be done incrementally
* Uses formula to calculate incremental mean p,,

of a sequence X1, Xy, ..., Xk
1
* M = pr-1 t o (X — Hi-1)

+ 0n(8) 0a(5) + 55 (Gt = Dul(s))

* Estimate state-action value function (q)
A - 1 A

© 8u(5,0) © 4(5,@) + 1 (Ge = a5, @)

* q\n(sr a) < 6[\”(5, Cl) + a(Gt — qn(sr a')))

@ can be viewed as step size or learning rate

* [Limitations
* High variance estimator, require lots of data

* Episode must end before data from episode
can be used to update

/ Every-Visit Incremental MC \

e Initialize N(s,a) = 0,G(s,a) =0Vs € S,a € A
* Loop
* Sample episode following policy 7
(So, Ao, R, S1, A1, Ry, ., ST—1,A1—1, RT)
* For each state-action paits (s, a)
* Define G, = R, + YRiy1 + V*Rpsp + - - -
YT7IR; as return from time step &
onwards where t is every time the state §
is visited and action a is taken until T (the
end of the episode)
* Increment counter of total every visits

N(s,a) =N(s,a) +1

* Update estimate §r(s, @) = (s, a) +

\ vm (Gt = Gnls, @) /

(2.B) Monte Carlo Policy Optimization - Estimate
optimal value function for unknown MDPs (Model Free Control)

* No knowledge of MDP transitions or rewards

. Observe_ the environment by sampling
trajectories

* Learn directly from experience (multiple
episodes)
* Estimate the optimal value function
* Use Policy Iteration approach
MC method 1n policy evaluation step

Greedy policy improvement on action-value
function q

n'(s) = argmaxq(s,a)
a

e (Caveats

* Greedy policy improvement on state value
function (V) not possible, requires MDP model

(i.e., only applicable to action-value function q)

* Might not explore all states - Can be solved using
stochastic policy (€-greedy) to encourage
continuous exploration

/o)

eterministic Policy Improvement
* For each state s € § (s in episode)

 m(s) =argmaxj(s,a)
a

€-Greedy Policy Improvement
* For each state s € § (s in episode)
e a,=argmax{(s,a)
a

1—€+—

|o‘ll,ifaza*

e m(s,a) =
' < ,otherwise

|A|

\ /

(3.A) Temporal Difference(TD) Learning - Estimate value function for
unknown MDPs (Model Free Prediction)

* Combination of Monte Carlo &
dynamic programming methods

* Immediately update estimate of v after each
observed (s, a,1,s") tuple

* TD learns from incomplete episodes, by
bootstrapping

* Estimate value function
* Update value toward estimated target return
* TD target: Ryyq + YU(St41)
* TDerror: 6¢ = [Rep1+yU(Ses1)] = U(Se)
* Advantages

* Lower variance than MC (although biased
estimator)

* Can be used in episodic or infinite-horizon

non-episodic MDPs

/

"

* Initialize U;(s) = 0 Vs € §, step size ¢ € (0, 1)
* Loop

o

TD(0)/1-step TD Learning

Sample state Sy

For each step t in episode until termination
* Take action A;based on policy T at S;
* Observe reward R;yq & next state S¢4q

* Update estimate U;(S;) < U,(Sy) +

a([Rer1 + ¥0(Se41)] — D(Se))

* St < St

(3.B.1) Model-Free Control with TD Methods
— SARSA (On-Policy TD Learning)

* Uses TD learning approach for policy
evaluation
* Estimate q of the policy 7 being followed

* €-Greedy policy improvement on action-
value function q

e Fstimate action value function

* Update value toward estimated target
return given (St’ At' Rt+1' St+1’ At+1)
transition tuple (hence called SARSA)

* SARSA target: Ripq + V@ (St41, Ars)

* Advantages
* On-policy algorithm
* Converges to the optimal action-value
function. 4.(s,a) = q.(s,a)

SARSA
* Initialize §(s,a) Vs € §,a € A arbitrarily,
q(s,a) = 0if s is terminal state, & € (0,1)
* Set initial €-greedy policy ™ randomly
* Loop

\

e Sample state Sy

* Sample action 4y at Sy based on policy 7

* For each step t in episode
* Take action Ay, observe Ry 1 and S¢41
* Choose action A¢yq at S¢pq1based on 1
* Update estimate §(S; A¢) <

y(iI\n(St+1iAt+1)] _ q\n(st At))

Update policy m(S;) based on € -greedy
St € Ser1, Ae < Apiq /

=S Ar) + a([Riypq +

On-policy versus Oft-Policy Learning & Control

* On-policy learning
* Learn to estimate and evaluate a policy T from experience obtained from following that
policy (same policy for prediction and control)

* Direct experience

* Otf-policy learning
* Learn to estimate and evaluate a policy 7 (called target policy) usin% experience
gathered from following a different policy (called behavior policy)
Indirect experience, learn from observing humans or other agents

* Re-use experience generated from old policies
* Learn about optimal policy while following exploratory policy
* Learn about multiple policies while following one policy

* Need importance sampling corrections on returns along whole episode

. G”t/nb _ (Tft(AﬂSt) mt(At411St+1) ”t(ATlsT)) G
t _ b b b t
P (A¢|St) T (At+11St+1) TP (ATIST)

(3.B.2) Model-Free Control with TD Methods
— (Q Learning (Off-Policy TD Learning)

* Q-learning 1s an off-policy RL algorithm
on action-values g

* Maintain state-action g estimates for
bootstrapping
* Use the value of the best future action
* Stochastic approximation like SARSA

e Hstimate action value function

* Next action 1s chosen using behavior policy
Apr1~1mp(St)
e Consider all alternative successor action

A'~ 1 (S;), take best A" for update
* Q-learning target: Ry 1 + ¥ max G(See1, AN

* Advantages
* No importance sampling required

* Allows both behavior and target policies to
improve

/ Q-Learning \
* Initialize §(s,a) Vs € §,a € A arbitrarily, §(s, a)

= 0 if s is terminal state, & € (0,1)
e Set initial e-greedy policy ° wir.t §
* Loop
e Sample state Sy
* Set e-greedy policy), wir.t
e Sample action Ay at Sy based on policy 7°
* For each step t in episode
* Take action A;, observe Ry 1 and S¢qq
* Update estimate §(S¢41,A¢s1) <

)4 rr}qa}x @(SHLA’)] — 4(S: Ap))

q(Se,Ae) + a([Resq +
* Update policy m based on €-greedy on g
* St < St

(4.A) Value Function Approximation — Scaling up RL

methods

* So far, we have been working with the tabular representation of the value
functions v(s) or q(s, a) and policy m(a|s) for finite and discrete MDPs

* But MDPs can be very large, need to scale up for large MDPs
* Too many states and/or actions to store in memoty, state space can be continuous

* Too slow to learn the value of each state individually

* Solution — Estimate value function with function approximation
* 9(5,0) = v;(s) or G(s,a,0) = q(s,a) where the value function is parameterized by 0
* Update parameter 0 using MC and TD methods (supervised learning)

e Generalizes to unseen states and/or actions

* Common Function Approximators (consider only differentiable ones)

* Linear combination of features * Neatest Neighbors
* Neural Networks * Decision Trees

(4.A.1) Linear Value Function Approx. by Gradient Descent

* Represent state by a feature vector X(s) = [x1(5), x5(8), ..., x,(s)]"

* Represent value function by a linear combination of features
* 7(s5,0) = x(5)70, where @ = [04,0,, ...,0,]"

* Find parameter vector 0 minimizing the mean-squared error between approximate
value function U(s, 0) and true value function v;(S) (value objective function)

+ J(8) = Ey | (va(s) - 9(s,0)]
* Jiinear(0) = E;[(v;(s) — x(s)"0)?] (for linear value function approx.)

* Apply gradient descent(or SGD) to find local minimum by updating parameters
+ Update rule: A8 = ——-aVJ(8) = & Er[(v(s) — 9(s, 8)) Vo0 (s, 0)]
* SGD update rule: AB = « [(vﬂ(s) — D(s, 9))V919(S, 9)]
* SGD update rule for linear value function approx.: A@ = a [(vn (s) — U(s, 9))X(S)]

* Stochastic gradient descent converges to global optimum

(4.A.1) Incremental Prediction/Control Algorithm —
MC/TD with Function Approx.

* In practice, we don’t have true value function v;; for prediction, we only
have rewards through environment interaction, thus substitute target for v,
* For MC, the target is the return G
« A0 = a [(G, — D(S;,0))VeD (S, 0)]
* For TD(0), the target is the TD target Ry + YVU(S¢4+1,0)
* A8 = a [(Rey1 +V0(Se41,0) — D(St, 0))VeD(St, 0)]

* In control, approximate action-value function (s, a, 0), substitute target for
true value of g
* For MC, the target is the return G
* A =a :(Gt — q(S¢, Ag, 9))V967(5t»14t: 9)]
* For TD(0), the target is the TD target Ryyq + Vq(S¢+1, 4141, 0)
* A8 = a [(Res1 +VG(St41,A41,0) — G(St, Ar, 0))Vp(St, Ar, 0)]

. 4 B) A}é roximate Policy Iteration - Do approximate policy evaluation using
(s,a 5) 4, followed by €-greedy policy improvement

Categorizing RLL Algorithms

Ve

RL Algorithms }
) |

v
N
Model Free
(Monte Carlo/Temporal Difference) |

v
* Poticy Based |
|

v v v) v
—{On-Policy){ Off-Policy | [Gradient Free | —{ Gradient Based |
o sarsa | | Q-Learning | " REINFORCE

 DQN | { TRPO/PPO
|
* * - : | ACKTR
| cs1)| DDQN | [QR_DQN][DDPG \

—

D3 || sac | azc/asc)

4[Model given J

[Model based J

2

.

Iteration

f Policy/Value \

J

Y N
Learn the

model

_

Dyna-Q

.

AlphaGo

(AlphaZero/ |

J

: World models

I2A

MBMF

MBVE

19

David 1. Inouye, Purdue University

Model-Based Reinforcement Learning —
Integrating Learning and Planning

* Previous approach — Model Free RL value/policy
* No model (unknown transition function P and aoting
reward function R) |
. . . . planning direct
* Learn value function/policy directly from experience RL

* New Approach — Model Based RL

First learn(estimate) model from experience model experience

* Plan for optimal value function/policy using learned _/

model model
* Integrate learning and planning into a single learning
architecture represents
* Possible to efficiently learn model using supervised Model My ———— MDP (S, A, P, R,y)

learning methods . M, = (73,7, fRn> (n is the parameter)
* Can understand model uncertainty
Py =P Rpy=R

* Model-based RL is only as good as the estimated
model. When the model is inaccurate, planning
process will compute a suboptimal policy.

Image Credit: Sutton and Barto

(5.A/B) Integrated Architectures — Dyna Dyna-Q Algorithm)

* Dyna
* Learn model from real experience
* Learn and plan value function/policy from
both real & simulated experience (Q-Learning)

* Involves one-step interaction(acting) with
the environment and n steps planning

* Store experience, get better policy with
fewer environment interactions

The Dyna Architecture
A

Policy/value functions

planning update

simulated
experience

direct RL
update

real
experience

search

model
control

learning

Model

Agent

[Environment]

Image Credit: Sutton and Barto

/ Tabular Dyna-Q
* Initialize §(s,a) and M'(s,a) Vs € S,a € A

* Loop
e Sample current state S¢
* Sample action A; at S¢ based on €-greedy on
* Take action A;, observe Ry 1 and S¢41
* q(St+1,A) < 4(Sp A + a([Reyr +
y max q(St+1,AD] — 4(St, Ar))

y M(Stt At) < Rt+1; St+1
* Loop n times

* Sample random state S

* Sample random previous action @ at S

e 1,5 « M(s,a)

q(s,a) < q(s,a) + a([r +
y max 4(s’, a)] = (s, a))
21
David L. Inouye, Purdue University

Categorizing RLL Algorithms

Vs

RL Algorithms]
) |

¢
tilpg] iee Model based
(Monte Carlo/Temporal Difference) |
| v | v .
model |
—{ On- Pollcy Off-Pohcy] Gradlent Free Gradient Bas@ Policy/Value , Dyna-Q ‘
‘ _ Iteration)) .
H[SARSA] " Q-Learning | " REINFORCE | | (AiphaZeroy | | L Yorld models |
. AlphaGo | I2A
 DQN | { TRPO/PPO b
{ I g ! , MBME
| cs1)| DDQN | [QR_DQN][DDPG __ ACKIR EVE

—

D3 || sac | azc/asc)

22

David I. Inouye, Purdue University

Policy-Based RI. — Policy Gradient Methods

* Previously, we approximated the value functions using parameters 0
* Obtained policy from value function ¥(s, 0) or (s, a, 8) using €-greedy

* Now, directly parameterize and learn the policy (s, a) = P[als, 0]
* Model-Free RL, better convergence properties, can learn stochastic policies
* Effective in high-dimensional or continuous action spaces
* Typically converge to a local rather than global optimum
* Evaluating a policy is typically inefficient and high variance

* Given a policy g (s, a) with parameters 0, find best @ which maximizes J(0)
* Policy Objective Function J(0) - Measures quality of policy mg
* Episodic environments: J(0) = vy, (s1,0)(also called start value)

* Continuing environments: J(0) = X5 dr, (5)Vp, (s, 0) (also called average value), dr, (s) is the
stationary distribution of Markov chain for g

* Can use gradient free optimization, but greater efficiency possible using gradient

* Policy Gradient Methods:
* Search for local maximum by ascending the policy gradient with 0: AB = aVy/(0)

(6.B) Monte Carlo Policy Gradient — REINFORC]

* Policy Gradient Theorem

* Por any differentiable policy and any policy

objective function
Vo/(8) = Er,[Vglog g (s, a)qy, (s, a)]
* Vglog my (s, a) is called the score function

* Many choices of difterentiable policy g —
Softmax, Gaussian, Neural Networks

* Monte Carlo Policy Gradient

* Update parameters by stochastic gradient
ascent, use policy gradient theorem

* Use return G as an unbiased estimate of
CITL'Q (St' At)
* AB = aVylog my(S,, A;) G

* MC policy gradient has high variance

* [Use actor-critic methods to reduce variance

(L]

~

/ REINFORCE

* Initialize policy parameters @ arbitrarily
* Loop
* Sample episode following policy g
(So, Ao, R1,S1, AL Ry, .., Sr—1, A7 -1, RT)
* Fort=1toT -1
* Gi=R +YyRy1 + VR +---

* 0 <0+ aVylog my(S, A;) G,

e Return O

\ /

(7.B) Advanced Policy Gradient Algorithms — Trust
Region Methods (TRPO/PPO)

* General policy gradient algorithms try to solvooe the optimization problem
max] () = Br_ry) ¥R:)

* Use stochastic gradient ascent on policy parameters 0 using policy gradient g

* g =VoJ(mp) = Eirg (X0 V" Vglog mg (Atlst)ATCQ (Se, Ap)]
* Advantage function A, (s, a) = qg, (S, @) — Vg, (S), relative advantage of an action i.e. how much
better to take action @ in state S over randomly selecting any other action and following g after

* However, its sample efficiency 1s poor as it searches in parameter space instead of policy
space. Also, the method is dependent on step size.
* Trust Region Methods — Proximal Policy Optimization(PPO)
* Define L;(n") = J(r') —J(m) (' = new policy, T = old policy), improvement over old policy
* Update 0 incrementally, approximately penalize policies from changing too much between steps
* Adaptive KL Penalty: 0,1 = argmax Lo, (0) — B KL(B[]0y), By is the penalty coefficient

* Clipped Obijective: 0,1 = argmax LGLIP (0) where

Lg'"(0) = Erop, [Xf- [mln(rt(e)Arck (St Ap), clip(r:(8), 1 — €,1 + €)Ar, (S, AT,
rt(O) = 1o (A¢|Se)/ o, (A |S,), € is a hyperparameter

Categorizing RLL Algorithms

Ve

RL Algorithms }
) |

v
N
Model Free
(Monte Carlo/Temporal Difference) |

v
* Poticy Based |
|

v v v) v
—{On-Policy){ Off-Policy | [Gradient Free | —{ Gradient Based |
o sarsa | | Q-Learning | " REINFORCE

 DQN | { TRPO/PPO
|
* * - : | ACKTR
| cs1)| DDQN | [QR_DQN][DDPG \

—

D3 || sac | azc/asc)

[Model based J

2

v

4[Model given J Learn the
model |
[Policy/Value i i Dyna-Q |
[teration

.

J

.

AlphaGo

(AlphaZero/ |

J

: World models

I2A

MBMF

MBVE

26

David 1. Inouye, Purdue University

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
L

Explain reinforcement

learning to a 6 year old.

I
Y

o)

4

We give treats and

punishments to teach...

Example copied verbatim from https://openai.com/blog/chatgpt.

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
totrain our
reward model.

e
w/

Explain reinforcement

learning to a 6 year old,

Step 3

RL. Application: Reinforcement Learning using
Human Feedback - Finetuning ChatGPT

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A

Write a story
about otters,

David 1. Inouye, Purdue University

Summary ot RL Algorithms

* Agent attempts to find optimal policies with highest returns via. environment
interaction
* Planning/Prediction evaluates a given policy and Learning/Control finds the optimal policy
* Policy Iteration for control involves value function estimation and policy improvement steps

* Model-Free learning does not require model of the environment (MDP)
* Monte Carlo (MC) estimates the future returns by sampling returns via. environment interaction

* Temporal Difference (TD) estimates the future returns in a more online manner
* SARSA (On-policy) and Q-Learning (off-policy) uses MC/TD for model-free control

* Model-Based learning like Dyna-Q estimates the model of the environment (MDP)

* The state-value, action-value functions and policies can be approx1mated for
large MDPs using neural networks or other parametric function approximators

* Policy gradient methods directly find optimal policies using gradient descent

* In practice, RL algorithms can be used in various applications like stock trading, self-
driving cars and even systems like ChatGPT

References

* Based on the excellent RLL book by Sutton and Barto
* http://incompleteideas.net/book/the-book-2nd.html

e Some content borrowed from David Silver’s Lecture Notes
* https://www.davidsilver.uk/teaching/

* Additional help from Stanford CS234 course by Emma Brunskill
* https://web.stanford.edu/class/cs234/modules.html

* OpenAl Blogs

* https://openai.com/blog/chatgpt

* https://spinningup.openai.com/en/latest/index.html

29

David I. Inouye, Purdue University

http://incompleteideas.net/book/the-book-2nd.html
https://www.davidsilver.uk/teaching/
https://web.stanford.edu/class/cs234/modules.html
https://openai.com/blog/chatgpt
https://spinningup.openai.com/en/latest/index.html

