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• Recall that our aim is to find the optimal policy
which maximizes the expected return (discounted 
sum of  future rewards)
• Policies can be compared based on value functions 

(policy ≈ value function), thus need a way to compute 
value function (Prediction) – Policy Evaluation
• Starting with an arbitrary policy improve the policy to 

reach optimal policy (Control) – Policy Iteration
• Optimal policy can be constructed from optimal value 

function, improve value function - Value Iteration
• What if  environment(MDP) is unknown? 

• Estimate value function via. reward sampling (Model Free) 
• Or learn a model of  the environment (Model Based), then 

compute value function (simulated experience) 
• What if  MDP has continuous or infinite states?

• Use parameterized function approximators for value 
function (Value based) or policy(Policy Based)

• Search or learn parameters (gradient free or gradient 
based searching)

Reward (𝑅#)
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(1.A) Policy Evaluation – How good is your policy?
• Evaluate a given policy 𝜋, estimate 𝑣,
• Also known as a Prediction problem

• Input: Known MDP 𝒮,𝒜,𝒫,ℛ, 𝛾 and policy 𝜋
• Output: Value function 𝑣!

• Solution - Iterative application of  Bellman 
equation and dynamic programming
• At each iteration 𝑘 + 1,  update 𝑣"#$(𝑠) from 𝑣𝑘(𝑠%)

for all state 𝑠 and successor states 𝑠%

• 𝑣"#$ 𝑠 = ∑&𝜋 𝑎 𝑠 𝑟 + 𝛾 ∑'%𝑝 𝑠%, 𝑟 𝑠, 𝑎 𝑣" 𝑠′
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Random policy
𝜋 𝑎 𝑠 = 0.25	
∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

Undiscounted 
episodic MDP (𝛾 = 1)

Image Credit: Sutton and Barto book, Example 4.1, pp. 76.

Terminal state is gray



(1.B.1) Policy Iteration – How to improve a policy? 
How to find the optimal policy ?
• Given a policy 𝜋, find optimal policy 𝝅* (Control)

• Evaluate the policy 𝜋, estimate 𝑣!
• Improve policy by acting greedily with respect to 𝑣!
• 𝜋! 𝑠 = arg max

"
𝑞# 𝑠, 𝑎 = arg max

"
(𝑟 + 𝛾 ∑$! 𝑝$$!" 𝑣#(𝑠

!))

• 𝑞! 𝑠, 𝜋′(𝑠) = max
"
𝑞! 𝑠, 𝑎 ≥ 𝑞! 𝑠, 𝜋 𝑠 = 𝑣!(𝑠)

• If  improvement stops, we have reached the optimal  
policy (also optimal value function) 
• 𝑞! 𝑠, 𝜋′(𝑠) = max

"
𝑞! 𝑠, 𝑎 = 𝑞! 𝑠, 𝜋(𝑠) = 𝑣!(𝑠)

• Bellman Optimality equation is satisfied
• 𝑣! 𝑠 = max

"
𝑞! 𝑠, 𝑎 = 𝒗∗ 𝑠 for all 𝑠
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(1.B.2) Value Iteration – Estimate optimal value function
• Find optimal value function 𝑣∗ directly (get 

optimal policy 𝜋* from 𝑣∗)
• Unlike policy iteration, there is no explicit policy
• Use Bellman Optimality equation to get 𝑣∗ 𝑠

from the solution to subproblems 𝑣∗ 𝑠′

• Solution - Iterative application of  Bellman 
optimality equation and dynamic programming
• At each iteration 𝑘 + 1,  update 𝑣"#$(𝑠) from
𝑣𝑘(𝑠%) for all state 𝑠 and successor states 𝑠′
• 𝑣"#$ 𝑠 = max

&
𝑟 + 𝛾∑'% 𝑝 𝑠%, 𝑟 𝑠, 𝑎 𝑣" 𝑠′
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(2.A.1) Monte Carlo Policy Evaluation - Estimate value 
function for unknown MDPs (Model Free Prediction)
• No knowledge of  MDP transitions 

or rewards 
• Observe the environment by sampling 

trajectories
• Learn directly from experience (multiple 

episodes)
• Estimate value function

• Take the mean of  the returns observed
• Consider complete episodes 

• Assumptions
• Applicable to episodic MDPs
• All episodes must terminate (finite 

horizon MDPs)
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First(Every) -Visit MC Evaluation
• Initialize 𝑁 𝑠 = 0, 𝐺 𝑠 = 0 ∀𝑠 ∈ 𝒮
• Loop

• Sample episode following policy 𝜋 
(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, . . . , 𝑆()%, 𝐴()%, 𝑅()

• For each state 𝑠
• Define 𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅#$% + 𝛾2𝑅#$* +	·	·	·
	𝛾()%𝑅𝑇 as return from time step 𝒕 
onwards where 𝒕 is the first(every) time 
the state 𝒔 is visited until 𝑇 (the end of  the 
episode)

• Increment counter of  total first(every) 
visits 𝑁(𝑠) = 𝑁(𝑠) + 1

• Increment total return 𝐺(𝑠) = 𝐺(𝑠) + 𝐺#
• Update estimate C𝑣𝜋(𝑠) = 𝐺(𝑠)/𝑁(𝑠)



(2.A.2) Monte Carlo Policy Evaluation - Estimate value 
function for unknown MDPs (Model Free Prediction)
• MC updates can be done incrementally

• Uses formula to calculate incremental mean 𝜇𝑘
of  a sequence 𝑥1, 𝑥2, … , 𝑥"

• 𝜇𝑘 = 𝜇")$ +
$
"
(𝑥" − 𝜇")$)

• 9𝑣𝜋(𝑠) ← 9𝑣𝜋(𝑠) +
$

* '
(𝐺+ − 9𝑣𝜋 𝑠 )

• Estimate state-action value function (𝑞) 
• 9𝑞𝜋(𝑠, 𝑎) ← 9𝑞𝜋(𝑠, 𝑎) +

$
* ',&

(𝐺+ − 9𝑞𝜋 𝑠, 𝑎 )
• 9𝑞𝜋(𝑠, 𝑎) ← 9𝑞𝜋(𝑠, 𝑎) + 𝛼(𝐺+ − 9𝑞𝜋 𝑠, 𝑎 ),      
𝛼 can be viewed as step size or learning rate

• Limitations
• High variance estimator, require lots of  data
• Episode must end before data from episode 

can be used to update
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Every-Visit Incremental MC
• Initialize 𝑁 𝑠, 𝑎 = 0, 𝐺 𝑠, 𝑎 = 0 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
• Loop

• Sample episode following policy 𝜋 
(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, . . . , 𝑆+,-, 𝐴+,-, 𝑅+)

• For each state-action pairs (𝑠, 𝑎)
• Define 𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅./- + 𝛾2𝑅./0 +	·	·	·

	𝛾+,-𝑅𝑇 as return from time step 𝒕 
onwards where 𝒕 is every time the state 𝒔 
is visited and action 𝒂 is taken until 𝑇 (the 
end of  the episode)

• Increment counter of  total every visits    
𝑁(𝑠, 𝑎) = 𝑁(𝑠, 𝑎) + 1

• Update estimate C𝑞𝜋 𝑠, 𝑎 = C𝑞𝜋(𝑠, 𝑎) +
-

1 $,"
(𝐺. − C𝑞𝜋 𝑠, 𝑎 )



(2.B) Monte Carlo Policy Optimization - Estimate 
optimal value function for unknown MDPs (Model Free Control)

• No knowledge of  MDP transitions or rewards 
• Observe the environment by sampling 

trajectories
• Learn directly from experience (multiple 

episodes)
• Estimate the optimal value function

• Use Policy Iteration approach
• MC method in policy evaluation step
• Greedy policy improvement on action-value 

function 𝑞
• 𝜋) 𝑠 = arg max

"
𝑞 𝑠, 𝑎

• Caveats 
• Greedy policy improvement on state value 

function (𝑣) not possible, requires MDP model 
(i.e., only applicable to action-value function 𝑞)

• Might not explore all states - Can be solved using 
stochastic policy (𝝐-greedy) to encourage 
continuous exploration
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Deterministic Policy Improvement
• For each state 𝑠 ∈ 𝒮 (𝑠 in episode)

• 𝜋 𝑠 = arg	max	C𝑞(𝑠, 𝑎)
.

𝝐-Greedy Policy Improvement
• For each state 𝑠 ∈ 𝒮 (𝑠 in episode)

• 𝑎∗ = arg	max	C𝑞(𝑠, 𝑎)
.

• 𝜋 𝑠, 𝑎 = 	K
1 − 𝝐 + 𝝐

𝓐
, 𝑖𝑓	𝑎 = 𝑎∗

𝝐
|𝓐|
	 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



(3.A) Temporal Difference(TD) Learning - Estimate value function for 
unknown MDPs (Model Free Prediction)

• Combination of  Monte Carlo & 
dynamic programming methods
• Immediately update estimate of  𝑣 after each 

observed (𝑠, 𝑎, 𝑟, 𝑠′) tuple
• TD learns from incomplete episodes, by 

bootstrapping 

• Estimate value function
• Update value toward estimated target return
• TD target: 𝑅+#$ + 𝛾 9𝑣(𝑆+#$)
• TD error ∶ 𝛿𝑡 = [𝑅+#$+𝛾 9𝑣(𝑆+#$)] − 9𝑣(𝑆+)

• Advantages
• Lower variance than MC (although biased 

estimator)
• Can be used in episodic or infinite-horizon 

non-episodic MDPs
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TD(0)/1-step TD Learning
• Initialize C𝑣𝜋(𝑠) = 0	∀𝑠 ∈ 𝒮, step size 𝛼 ∈ (0, 1)
• Loop 

• Sample state 𝑆0 
• For each step 𝑡 in episode until termination

• Take action 𝐴𝑡	based on policy 𝜋 at 𝑆𝑡
• Observe reward 𝑅#$%	& next state 𝑆#$%
• Update estimate C𝑣𝜋(𝑆𝑡) ← C𝑣𝜋(𝑆𝑡) +
𝛼([𝑅#$% + 	𝛾 C𝑣𝜋 𝑆#$% ] − C𝑣𝜋 𝑆𝑡 )

• 𝑆𝑡 ← 𝑆#$%



(3.B.1) Model-Free Control with TD Methods 
– SARSA (On-Policy TD Learning)
• Uses TD learning approach for policy 

evaluation
• Estimate 𝑞 of  the policy 𝜋 being followed 
• 𝜖-Greedy policy improvement on action-

value function 𝑞
• Estimate action value function

• Update value toward estimated target 
return given 𝑆F , 𝐴F , 𝑅F#$, 𝑆F#$, 𝐴F#$
transition tuple (hence called SARSA)

• SARSA target: 𝑅F#$ + 𝛾 :𝑞𝜋 𝑆F#$, 𝐴F#$
• Advantages

• On-policy algorithm 
• Converges to the optimal action-value 

function.  ;𝑞𝜋(𝑠, 𝑎) → 𝑞∗(𝑠, 𝑎)
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SARSA
• Initialize C𝑞 𝑠, 𝑎 	∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 arbitrarily, 

C𝑞 𝑠, 𝑎 = 0 if  𝑠 is terminal state, 𝛼 ∈ (0,1)
• Set initial 𝜖-greedy policy 𝜋 randomly
• Loop 

• Sample state 𝑆0
• Sample action 𝐴0	 at 𝑆0	 based on policy 𝜋
• For each step 𝑡 in episode

• Take action 𝐴𝑡, observe 𝑅#$%	and 𝑆#$%
• Choose action 𝐴#$% at 𝑆#$%based on 𝜋
• Update estimate C𝑞𝜋(𝑆𝑡,𝐴𝑡) ←

C𝑞𝜋(𝑆𝑡, 𝐴#) + 𝛼([𝑅#$% +
	𝛾 C𝑞𝜋 𝑆#$%, 𝐴#$% ] − C𝑞𝜋(𝑆𝑡,𝐴𝑡))

• Update policy 𝜋 𝑆𝑡  based on 𝜖-greedy
• 𝑆𝑡 ← 𝑆#$%, 𝐴𝑡 ← 𝐴#$%



On-policy versus Off-Policy Learning & Control
• On-policy learning

• Learn to estimate and evaluate a policy 𝜋 from experience obtained from following that 
policy (same policy for prediction and control)

• Direct experience
• Off-policy learning

• Learn to estimate and evaluate a policy 𝜋F(called target policy) using experience 
gathered from following a different policy (called behavior policy 𝜋G)

• Indirect experience, learn from observing humans or other agents
• Re-use experience generated from old policies
• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy

• Need importance sampling corrections on returns along whole episode
• 𝐺F

H4/H5 = 64(84|94)
65(84|94)

64(84;<|94;<)
65(84;<|94;<)

… H4(J=|L=)
H5(J=|L=)

𝐺F

David I. Inouye, Purdue University
14



(3.B.2) Model-Free Control with TD Methods 
– Q Learning (Off-Policy TD Learning)
• Q-learning is an off-policy RL algorithm 

on action-values 𝑞
• Maintain state-action 𝑞 estimates for 

bootstrapping
• Use the value of  the best future action 
• Stochastic approximation like SARSA

• Estimate action value function
• Next action is chosen using behavior policy  
𝐴+#$~ 𝜋.(𝑆+)

• Consider all alternative successor action 
𝐴%~ 𝜋(𝑆+), take best 𝐴% for update

• Q-learning target: 𝑅+#$ + 𝛾 max/%
9𝑞 𝑆+#$, 𝐴′

• Advantages
• No importance sampling required
• Allows both behavior and target policies to 

improve

David I. Inouye, Purdue University
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Q-Learning
• Initialize C𝑞 𝑠, 𝑎 	∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 arbitrarily, C𝑞 𝑠, 𝑎

= 0 if  𝑠 is terminal state, 𝛼 ∈ (0,1)
• Set initial 𝜖-greedy policy 𝜋> w.r.t C𝑞
• Loop 

• Sample state 𝑆0
• Set 𝜖-greedy policy 𝜋> w.r.t C𝑞
• Sample action 𝐴0	 at 𝑆0	 based on policy 𝜋>
• For each step 𝑡 in episode

• Take action 𝐴𝑡, observe 𝑅#$%	and 𝑆#$%
• Update estimate C𝑞(𝑆#$%, 𝐴#$%) ←

C𝑞(𝑆𝑡, 𝐴#) + 𝛼([𝑅#$% +
	𝛾	max

?@
	 C𝑞 𝑆#$%, 𝐴′ ] − C𝑞(𝑆# , 𝐴#))

• Update policy 𝜋 based on 𝜖-greedy on C𝑞	
• 𝑆𝑡 ← 𝑆#$%



(4.A) Value Function Approximation – Scaling up RL 
methods
• So far, we have been working with the tabular representation of  the value 

functions 𝑣(𝑠) or 𝑞 𝑠, 𝑎 and policy 𝜋(𝑎|𝑠) for finite and discrete MDPs
• But MDPs can be very large, need to scale up for large MDPs

• Too many states and/or actions to store in memory, state space can be continuous
• Too slow to learn the value of  each state individually

• Solution – Estimate value function with function approximation
• ;𝑣 𝑠, 𝛉 ≈ 𝑣H(𝑠) or ;𝑞 𝑠, 𝑎, 𝛉 ≈ 𝑞H(𝑠, 𝑎) where the value function is parameterized by 𝛉
• Update parameter 𝛉 using MC and TD methods (supervised learning)
• Generalizes to unseen states and/or actions

• Common Function Approximators (consider only differentiable ones)

David I. Inouye, Purdue University
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• Linear combination of  features
• Neural Networks

• Nearest Neighbors
• Decision Trees



(4.A.1) Linear Value Function Approx. by Gradient Descent
• Represent state by a feature vector 𝐱 𝑠 = [𝑥4 𝑠 , 𝑥5 𝑠 , … , 𝑥6(𝑠)]7

• Represent value function by a linear combination of  features 
• ;𝑣 𝑠, 𝛉 = 𝐱(𝑠)M𝛉, where 𝛉 = [𝜃$, 𝜃N, … , 𝜃O]M

• Find parameter vector 𝛉 minimizing the mean-squared error between approximate 
value function 1𝑣 𝑠, 𝛉 and true value function 𝑣8(𝑠) (value objective function)
• 𝐽 𝛉 = 𝔼H 𝑣H 𝑠 − ;𝑣 𝑠, 𝛉 N

• 𝐽PQRSTU 𝛉 = 𝔼H 𝑣H 𝑠 − 𝐱(𝑠)M𝛉 N (for linear value function approx.)
• Apply gradient descent(or SGD) to find local minimum by updating parameters

• Update rule: ∆𝛉 = − 𝟏
𝟐
𝜶𝛁𝐽 𝛉 = 𝜶 𝔼H 𝑣H 𝑠 − ;𝑣 𝑠, 𝛉 𝛁𝛉 ;𝑣 𝑠, 𝛉

• SGD update rule: ∆𝛉 = 𝜶 𝑣H 𝑠 − ;𝑣 𝑠, 𝛉 𝛁𝛉 ;𝑣 𝑠, 𝛉
• SGD update rule for linear value function approx.: ∆𝛉 = 𝜶 𝑣H 𝑠 − ;𝑣 𝑠, 𝛉 𝐱 𝑠

• Stochastic gradient descent converges to global optimum
• Seems great…but we don’t know 𝑣8!

David I. Inouye, Purdue University
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(4.A.1) Incremental Prediction/Control Algorithm –
MC/TD with Function Approx.
• In practice, we don’t have true value function 𝑣I for prediction, we only 

have rewards through environment interaction, thus substitute target for 𝑣I
• For MC, the target is the return 𝐺\

• ∆𝛉 = 𝜶 𝐺+ − 9𝑣 𝑆+, 𝛉 𝛁𝛉 9𝑣 𝑆+, 𝛉
• For TD(0), the target is the TD target 𝑅\]^ + 𝛾 *𝑣(𝑆\]^, 𝛉)

• ∆𝛉 = 𝜶 𝑅+#$ + 𝛾 9𝑣(𝑆+#$, 𝛉) − 9𝑣 𝑆+, 𝛉 𝛁𝛉 9𝑣 𝑆+, 𝛉

• In control, approximate action-value function "𝑞 𝑠, 𝑎, 𝛉 , substitute target for 
true value of  𝑞I
• For MC, the target is the return 𝐺\

• ∆𝛉 = 𝜶 𝐺+ − 9𝑞 𝑆+, 𝐴+, 𝛉 𝛁𝛉 9𝑞 𝑆+, 𝐴+, 𝛉
• For TD(0), the target is the TD target 𝑅\]^ + 𝛾*𝑞(𝑆\]^, 𝐴\]^, 𝛉)

• ∆𝛉 = 𝜶 𝑅+#$ + 𝛾9𝑞(𝑆+#$, 𝐴+#$, 𝛉) − 9𝑞 𝑆+, 𝐴+, 𝛉 𝛁𝛉 9𝑞 𝑆+, 𝐴+, 𝛉

• (4.B) Approximate Policy Iteration - Do approximate policy evaluation using 
"𝑞 𝑠, 𝑎, 𝛉 ≈ 𝑞I followed by 𝜖-greedy policy improvement 

David I. Inouye, Purdue University
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Model-Based Reinforcement Learning –
Integrating Learning and Planning
• Previous approach – Model Free RL

• No model (unknown transition function 𝒫 and 
reward function ℛ)

• Learn value function/policy directly from experience
• New Approach – Model Based RL

• First learn(estimate) model from experience
• Plan for optimal value function/policy using learned 

model
• Integrate learning and planning into a single 

architecture
• Possible to efficiently learn model using supervised 

learning methods
• Can understand model uncertainty
• Model-based RL is only as good as the estimated 

model. When the model is inaccurate, planning 
process will compute a suboptimal policy.

David I. Inouye, Purdue University
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Model ℳA
BCDBCECF#E

 MDP 𝒮,𝒜,𝒫, ℛ, 𝛾
ℳA = 𝒫A , ℛA 	 (𝜂 is the parameter)

𝒫A 	≈ 𝒫	 ℛA ≈ ℛ

Image Credit: Sutton and Barto



(5.A/B) Integrated Architectures – Dyna (Dyna-Q Algorithm)

• Dyna 
• Learn model from real experience 
• Learn and plan value function/policy from 

both real & simulated experience (Q-Learning)
• Involves one-step interaction(acting) with 

the environment and 𝑛 steps planning
• Store experience, get better policy with 

fewer environment interactions

David I. Inouye, Purdue University
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Tabular Dyna-Q
• Initialize C𝑞 𝑠, 𝑎 and ℳ 𝑠, 𝑎 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
• Loop 

• Sample current state 𝑆#	
• Sample action 𝐴𝑡 at 𝑆# based on 𝜖-greedy on C𝑞	
• Take action 𝐴𝑡, observe 𝑅#$%	and 𝑆#$%
• C𝑞(𝑆#$%, 𝐴𝑡) ← C𝑞(𝑆𝑡, 𝐴𝑡) + 𝛼([𝑅#$% +
	𝛾	max

?@
	 C𝑞 𝑆#$%, 𝐴′ ] − C𝑞(𝑆# , 𝐴#))

• ℳ 𝑆# , 𝐴# ← 𝑅#$%, 𝑆#$%
• Loop 𝑛 times

• Sample random state s
• Sample random previous action 𝑎 at 𝑠
• 𝑟, 𝑠@ ← 	ℳ(𝑠, 𝑎)
• C𝑞(𝑠, 𝑎) ← C𝑞(𝑠, 𝑎) + 𝛼([𝑟 +
	𝛾	max

.@
	 C𝑞 𝑠′, 𝑎′ ] − C𝑞(𝑠, 𝑎))

Image Credit: Sutton and Barto
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Policy-Based RL – Policy Gradient Methods 
• Previously, we approximated the value functions using parameters 𝛉

• Obtained policy from value function ;𝑣 𝑠, 𝛉 or ;𝑞 𝑠, 𝑎, 𝛉 using 𝜖-greedy 
• Now, directly parameterize and learn the policy 𝜋9 𝑠, 𝑎 = ℙ[𝑎|𝑠, 𝛉]

• Model-Free RL, better convergence properties, can learn stochastic policies
• Effective in high-dimensional or continuous action spaces
• Typically converge to a local rather than global optimum
• Evaluating a policy is typically inefficient and high variance

• Given a policy 𝜋9 𝑠, 𝑎 with parameters 𝛉, find best 𝛉 which maximizes 𝐽 𝛉
• Policy Objective Function 𝐽 𝛉 - Measures quality of  policy 𝜋Y

• Episodic environments: 𝐽 𝛉 = 𝑣!'(𝑠*, 𝛉)(also called start value)
• Continuing environments: 𝐽 𝛉 = ∑+ 𝑑!' 𝑠 𝑣!'(𝑠, 𝛉) (also called average value), 𝑑!' 𝑠 is the 

stationary distribution of  Markov chain for 𝜋,
• Can use gradient free optimization, but greater efficiency possible using gradient
• Policy Gradient Methods:

• Search for local maximum by ascending the policy gradient with 𝛉: ∆𝛉 = 𝜶𝛁𝜽𝐽 𝛉
David I. Inouye, Purdue University
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(6.B) Monte Carlo Policy Gradient – REINFORCE
• Policy Gradient Theorem 

• For any differentiable policy and any policy 
objective function

𝛁𝜽𝐽(𝛉) = 𝔼HG[𝛁𝜽log 𝜋Y(𝑠, 𝑎)𝑞HG(𝑠, 𝑎)]
• 𝛁𝜽log 𝜋Y(𝑠, 𝑎) is called the score function
• Many choices of differentiable policy 𝜋Y –

Softmax, Gaussian, Neural Networks
• Monte Carlo Policy Gradient

• Update parameters by stochastic gradient 
ascent, use policy gradient theorem

• Use return 𝐺F as an unbiased estimate of  
𝑞HG(𝑆𝑡, 𝐴F)

• ∆𝛉 = 𝛼𝛁𝜽log 𝜋Y 𝑆𝑡, 𝐴F 𝐺F
• MC policy gradient has high variance

• Use actor-critic methods to reduce variance
David I. Inouye, Purdue University
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REINFORCE
• Initialize policy parameters 𝛉 arbitrarily
• Loop

• Sample episode following policy 𝜋! 
(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, . . . , 𝑆()%, 𝐴()%, 𝑅()

• For 𝑡 = 1 to 𝑇 − 1
• 𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅#$% + 𝛾2𝑅#$* +	·	·	·
	𝛾()%𝑅𝑇

• 𝛉 ← 𝛉 + 𝛼𝛁𝜽 log 	𝜋! 𝑆𝑡, 𝐴# 𝐺#
• Return 𝛉



(7.B) Advanced Policy Gradient Algorithms – Trust 
Region Methods (TRPO/PPO)

• General policy gradient algorithms try to solve the optimization problem

max
𝛉

𝐽 𝜋! = 𝔼J~L'[l
#MN

O

𝛾#𝑅#]

• Use stochastic gradient ascent on policy parameters 𝛉 using policy gradient 𝑔
• 𝑔 = 𝛁𝜽𝐽 𝜋, = 𝔼.~!'[∑012

3 𝛾0 𝛁𝜽log 𝜋, 𝐴𝑡|𝑆𝑡 𝐀!'(𝑆0, 𝐴0)]
• Advantage function 𝐀𝝅𝜽 𝒔, 𝒂 = 𝒒𝝅𝜽 𝒔, 𝒂 − 𝒗𝝅𝜽(𝒔), relative advantage of  an action i.e. how much 

better to take action 𝒂 in state 𝒔 over randomly selecting any other action and following 𝜋, after
• However, its sample efficiency is poor as it searches in parameter space instead of  policy 

space. Also, the method is dependent on step size.
• Trust Region Methods – Proximal Policy Optimization(PPO)

• Define ℒ! 𝜋) ≈ 𝐽 𝜋) − 𝐽(𝜋) (𝜋) → new policy, 𝜋 → old policy), improvement over old policy
• Update 𝛉 incrementally, approximately penalize policies from changing too much between steps
• Adaptive KL Penalty: 𝛉56* = argmax

𝛉
ℒ𝛉) 𝛉 − 𝛽5𝐾𝐿(𝛉||𝛉5), 𝛽5 is the penalty coefficient

• Clipped Objective: 𝛉56* = argmax
𝛉

ℒ𝛉)
89:; 𝛉 where 

ℒ𝛉)
89:; 𝛉 = 𝔼.~!)[∑012

< [min(𝑟0 𝛉 W𝐀!𝒌(𝑆0, 𝐴0), clip 𝑟0 𝛉 , 1 − 𝜖, 1 + 𝜖 W𝐀!)(𝑆0, 𝐴0))]] , 
𝑟0 𝛉 = 𝜋, 𝐴0|𝑆0 / 𝜋,) 𝐴𝑡|𝑆𝑡 , 𝜖 is a hyperparameter

David I. Inouye, Purdue University
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RL Application: Reinforcement Learning using 
Human Feedback  - Finetuning ChatGPT

David I. Inouye, Purdue University
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Example copied verbatim from https://openai.com/blog/chatgpt.



Summary of  RL Algorithms
• Agent attempts to find optimal policies with highest returns via. environment 

interaction
• Planning/Prediction evaluates a given policy and Learning/Control finds the optimal policy
• Policy Iteration for control involves value function estimation and policy improvement steps

• Model-Free learning does not require model of  the environment (MDP)
• Monte Carlo (MC) estimates the future returns by sampling returns via. environment interaction
• Temporal Difference (TD) estimates the future returns in a more online manner
• SARSA (On-policy) and Q-Learning (off-policy) uses MC/TD for model-free control

• Model-Based learning like Dyna-Q estimates the model of  the environment (MDP)
• The state-value, action-value functions and policies can be approximated for 

large MDPs using neural networks or other parametric function approximators
• Policy gradient methods directly find optimal policies using gradient descent
• In practice, RL algorithms can be used in various applications like stock trading, self-

driving cars and even systems like ChatGPT

David I. Inouye, Purdue University
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