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What is deep learning? 
Sequential transformations learned from data

▸Classical deep neural networks  𝑓 𝑥 = 𝜎 𝐴3𝜎 𝐴2𝜎 𝐴1𝑥

▸More generally, deep models are sequential transformations: 

𝑓 𝑥 = 𝑓3 𝑓2 𝑓1 𝑥
▸𝑧(1) = 𝑓1 𝑥    (Layer 1)

▸𝑧(2) = 𝑓2 𝑧(1)    (Layer 2)

▸𝑧(3) = 𝑓3 𝑧(2)    (Layer 3)

▸Deep learning estimates these transformations from data
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Motivation 1: Linear models cannot model 
complex classification boundaries

▸Linear models 
cannot capture 
complex patterns

▸With deep neural 
network, we can 
capture non-linear 
patterns
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https://playground.tensorflow.org/



Motivation 2: Hand crafting features can increase 
performance but is expensive

Load Data
Preprocess 

Data
Handcraft 
features

Perform 
feature 

selection
...

Estimate or 
apply ML 

model
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Let the deep model do all the feature engineering automatically! :-) 

Classical Machine Learning
Feature engineering

Deep Learning

Caveat: But now you have to select the model architecture (a little like feature engineering).



Motivation 3: Deep learning can automatically 
learn a hierarchy of representations
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https://towardsdatascience.com/a-road-map-for-deep-learning-b9aee0b2919f



The key design choices of deep learning are 
architecture, algorithm, and objective function

1. Deep model architecture

2. Deep learning optimization algorithm

3. Deep learning objective function design
▸(Application specific so we will discuss later 
with Transformers, VAEs, Diffusion etc.)
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The model architecture defines the structure of 
the model (though not parameter values)

▸Which layers or modules?
▸Fully connected
▸Convolutional
▸Residual blocks
▸…

▸How big?
▸What is the dimensions of 

the input and output?

▸How many and in what 
order?
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The architecture defines 
the inductive bias of the model

▸Inductive bias is the bias of the 
model to perform better on 
certain problems

▸A modern view of the “No Free 
Lunch Theorem”

▸Example: Convolutional 
networks perform very well on 
image data

▸Example: Attention-based 
“Transformer” networks have 
proven particularly successful 
for sequence data
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Fully connected layers are linear functions followed by 
elementwise non-linear activation functions

▸Remember logistic 
regression:

𝑓 𝑥 = 𝜎 𝜃𝑇𝑥

▸A fully connected layer can 
be seen as multiple logistic 
regressions: 

𝑓𝐹𝐶 𝑥 = 𝜎 𝜃1
𝑇𝑥 ,⋯ , 𝜎 𝜃𝑘

𝑇𝑥

▸A deep fully connected 
network is multiple fully 
connected layers:

𝑓 𝑥 = 𝜎 𝐴3𝜎 𝐴2𝜎 𝐴1𝑥
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The optimization algorithm defines how the 
parameters will be updated

▸Optimizer
▸SGD, ADAM, etc.
▸Step size

▸Special “optimization” layers
▸BatchNorm
▸Dropout

▸Order of optimization updates
▸Example: Multiple inner optimization problems

(e.g., adversarial optimization, GAN)
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Automatic differentiation enables decoupling 
between architecture design and algorithm

▸All computation can be broken into simple 
components
▸ Examples: sum, multiply, exponential, convolution

▸Derivatives can be derived mathematically

▸Derivatives for any composition can be derived via 
chain rule! ☺

▸(Prof. Jeffrey Siskind was a pioneer in automatic 
differentiation, see 
https://www.jmlr.org/papers/volume18/17-468/17-468.pdf)
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https://www.jmlr.org/papers/volume18/17-468/17-468.pdf


Reverse-mode automatic differentiation can be 
computed in almost the same time as the original 
computation itself!

▸Forward pass: Original objective computation
ℒ 𝑋, 𝑦; 𝜃 =

1

𝑛
෍

𝑖

ℓ 𝑦𝑖 , 𝑓𝑘 ⋯𝑓2 𝑓1 𝑥𝑖

▸Backward pass: Compute gradient by stepping backwards 
through computation

∇𝜃ℒ 𝑋, 𝑦; 𝜃
▸Also called “backpropagation” algorithm since it 

backpropagates the derivative

▸Amazingly, the cost of the forward and backward passes 
are equal up to a constant
▸How many forward passes to approximate derivative via 

small finite differences?
▸𝑂(𝑀) where 𝑀 is the number of parameters!
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PyTorch and TensorFlow implement automatic 
differentiation directly

▸Demo doing automatic differentiation
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