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Why convolutional networks?

▸Neuroscientific inspiration

▸Computational reasons
▸Sparse computation (compared to full deep 

networks)
▸Shared parameters (only a small number of shared 

parameters)
▸Translation invariance
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Motivation for convolution networks:
Gabor functions derived from neuroscience 
experiments are simple convolutional filters [DL, ch. 9]
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Convolutional networks automatically learn filters 
similar to Gabor functions [DL, ch. 9]
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1D convolutions are similar but slightly different 
than signal processing / math convolutions
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Padding or stride parameters alter the 
computation and output shape
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1D convolutions are similar but slightly different 
than signal processing / math convolutions
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Switch to demo of 1D
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2D convolutions are simple generalizations to 
matrices
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Switch to demo of 2D
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2D convolutions with channels are like simple 2D 
convolutions but all arrays have a channel dimension
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𝑥 ∈ ℛ𝑐×ℎ×𝑤

𝑦 ∈ ℛ1×ℎ′×𝑤′

𝑓 ∈ ℛ𝑐×𝑓ℎ×𝑓𝑤

“𝑓ℎ × 𝑓𝑤  convolution” (channel dimension is assumed)



Multiple convolutions increase the output 
channel dimension
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𝑥 ∈ ℛ𝑐×ℎ×𝑤

𝑦 ∈ ℛ4×ℎ′×𝑤′

𝑓𝑗 ∈ ℛ𝑐×𝑓ℎ×𝑓𝑤



Reasoning about input and output shapes is 
important for debugging and designing CNNs

▸Convolution input parameters
▸𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑛 = 𝐶𝑖𝑛

▸𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑂𝑢𝑡 = 𝐶𝑜𝑢𝑡  (𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 # 𝑓𝑖𝑙𝑡𝑒𝑟𝑠)
▸𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒 = 𝐾0, 𝐾1

▸𝑆𝑡𝑟𝑖𝑑𝑒 = 𝑆0, 𝑆1

▸𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑃0, 𝑃1

▸𝐶𝑜𝑢𝑡 = # 𝑓𝑖𝑙𝑡𝑒𝑟𝑠
▸Output spatial dimensions

▸𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛+2 𝑃0−𝐾0

𝑆0
+ 1

▸𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛+2 𝑃1−𝐾1

𝑆1
+ 1

▸Output batch dimension should match input

David I. Inouye 13



Common convolution configurations

▸Output has same height and width as input
▸1 x 1 convolution with padding=0, stride=1
▸3 x 3 convolution with padding=1, stride=1
▸5 x 5 convolution with padding=2, stride=1

▸Output has half the height and width of input
▸2 x 2 convolution with padding=0, stride=2
▸4 x 4 convolution with padding=1, stride=2
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𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛 + 2 𝑃0 − 𝐾0

𝑆0
+ 1



Switch to demo of 2D with channels, activation 
functions, and pooling
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Transposed convolution can be used to upsample an 
tensor/image to have higher dimensions

▸Also known as:
▸Fractionally-strided convolution
▸Improperly, deconvolution

▸Remember: Convolution is like matrix 
multiplication 

𝑦 = 𝑥 ∗  𝑓 ⇔ vec 𝑦 =  𝐴𝑓vec(𝑥)

▸ Transpose convolution is the transpose of 𝐴𝑓:
vec 𝑦 =  𝐴𝑓

𝑇vec(𝑥)
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Convolution operator with corresponding matrix
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(∗) =

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb


Transposed convolution operator with 
corresponding matrix
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=

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

∗
Reshaped output

Reshaped input

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb


Transposed convolution can be equivalent to a simple 
convolution with zero rows/columns added
(added zeros simulate fractional strides)
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(∗) =

Original 
input

Zero-padded input

Kernel
Output

(Note: More modern upsampling layers 
upsample by imputing/interpolating non-zeros 
and then apply convolution.)



Computing tensor shapes with transpose 
convolutions

▸Channels is computed the same as convolution

▸For spatial dimensions, you switch the input and output dimensions
▸Reason about the standard convolution dimensions
▸And then flip input and output dimensions

▸Like convolutions, output has same height and width as input
▸1 x 1 convolution with padding=0, stride=1
▸3 x 3 convolution with padding=1, stride=1
▸(Stride of 1 is equivalent to stride of 1 convolution)

▸Output has double (upsample) the height and width of input
▸2 x 2 convolution with padding=0, stride=2
▸4 x 4 convolution with padding=1, stride=2
▸6 x 6 convolution with padding=2, stride=2

David I. Inouye 20



Demo of  CIFAR-10 CNN in Pytorch
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Two important modern CNN 
architecture concepts:

batch normalization and 
residual networks
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Batch normalization dynamically normalizes each 
feature to have zero mean and unit variance

▸Basic idea: Normalize input batch of each layer during the 
forward pass

1. Input is minibatch of data 𝑋𝑡 ∈ ℝ𝑚×𝑑  at iteration 𝑡
2. Compute mean and standard deviation for every feature 

𝜇𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 , 𝜎𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 − 𝜇𝑗
𝑡 2

, ∀𝑗 ∈ 1, ⋯ , 𝑑

3. Normalize each feature (note different for every batch)

෤𝑥𝑖,𝑗
𝑡 =

𝑥𝑖,𝑗
𝑡 − 𝜇𝑗

𝑡

𝜎𝑗
𝑡

4. Output ෨𝑋𝑡
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Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help 
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).



Because BatchNorm removes linear effects, 
extra linear parameters are also learned

▸The form of this final update is:

෤𝑥𝑖,𝑗
𝑡 =

𝑥𝑖,𝑗
𝑡 − 𝜇𝑗

𝑡

𝜎𝑗
𝑡 ⋅ 𝛾𝑗 + 𝛽𝑗

▸Where 𝛾𝑗 and 𝛽𝑗 are learnable parameters
▸While 𝜇𝑗

𝑡 and 𝜎𝑗
𝑡 are computed from the minibatch

▸But how do we compute 𝜇𝑗
𝑡 and 𝜎𝑗

𝑡 about during 
test time (i.e., no minibatch)?

▸Use running average of mean and variance

𝜇𝑟𝑢𝑛
𝑡 = 𝜆𝜇𝑟𝑢𝑛

𝑡−1 + 1 − 𝜆 𝜇𝑏𝑎𝑡𝑐ℎ
𝑡

 

𝜎2
𝑟𝑢𝑛
𝑡

= 𝜆𝜎2
𝑟𝑢𝑛
𝑡−1

+ 1 − 𝜆 𝜎2
𝑏𝑎𝑡𝑐ℎ
𝑡
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For CNNs, the channel dimension 
is treated as a “feature”

▸If the input minibatch tensor is 𝑋𝑡 ∈
ℝ𝑚×𝑐×ℎ×𝑤, then the channel dimension 𝑐 is 
treated as a feature:

𝜇𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 , 𝜎𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 − 𝜇𝑗
𝑡 2

,

∀𝑗 ∈ 1, ⋯ , 𝑐
▸Where the mean is taken over both the batch 

dimension 𝑚 and the spatial dimensions ℎ and 𝑤
▸Called “Spatial Batch Normalization”

▸Variants: Instance, Group or Layer  
Normalization
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https://pytorch.org/docs/stable/nn.html#normalization-layers



BatchNorm can stabilize and accelerate training 
of deep models

▸To use in practice:
▸Only normalize batches during training 

(model.train())
▸Turn off after training (model.eval())

▸Uses running average of mean and variance

▸Surprisingly effective at stabilizing training, 
reducing training time, and producing better 
models

▸Not fully understood why it works
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Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help 
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).



Demo of batch normalization in PyTorch
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Residual networks add the input 
to the output of the CNN

▸Most deep model layers have the form:
𝑦 = 𝑓 𝑥

▸Where 𝑓 could be any function including a 
convolutional layer like 𝑓 𝑥 = 𝜎 Conv 𝜎 Conv 𝑥

▸Residual layers add back in the input
𝑦 = 𝑓 𝑥 + 𝑥

▸Notice that 𝑓 𝑥  models the difference between 𝑥 
and 𝑦 (hence the name residual)
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He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 770-778).



A residual network enables deeper 
networks because gradient 
information can flow between layers

▸A data flow diagram shows the 
“shortcut” connections

▸Consider composing 2 residual layers:
▸𝑧 1 = 𝑓1 𝑥 + 𝑥

▸𝑧 2 = 𝑓2 𝑧 1 + 𝑧 1

▸Or, equivalently
𝑧 2 = 𝑓2 𝑓1 𝑥 + 𝑥 + 𝑓1 𝑥 + 𝑥

▸If the residuals = 0, then this is merely 
the identity function
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Images from: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (pp. 770-778).



Detail: If the dimensionality is not the same, then use 
either fully connected layer or convolution layer to match

▸In the 1D case, suppose 𝑓 𝑥 : ℝ𝑑 → ℝ𝑚, then 
we need to multiply 𝑥 by linear operator to 
match the dimension

𝑦 = 𝑓 𝑥 + 𝑊𝑥,  where 𝑊 ∈ ℝ𝑚×𝑑

▸Similarly, for images, if 𝑓 𝑥 : ℝ𝑐×ℎ×𝑤 →
ℝ𝑐′×ℎ′×𝑤′

, we can apply a convolution layer to 
match the dimensions

𝑦 = 𝑓 𝑥 + conv 𝑥 ,
where conv ⋅ : ℝ𝑐×ℎ×𝑤 → ℝ𝑐′×ℎ′×𝑤′
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Demo of CNN with very simple residual network
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U-Nets have an autoencoder structure with skip 
connections for semantic segmentation task

David I. Inouye 32

Figure from: Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. 
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

▸Concatenation + 
convolution rather 
than residual skip 
connections

▸Any (pretrained) 
classification 
backbone can be 
used for encoder

▸State-of-the-art 
semantic 
segmentation are 
based on this idea
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