
Convolutional Neural
Networks (CNN)

David I. Inouye

David I. Inouye 0

Why convolutional networks?

▸Neuroscientific inspiration

▸Computational reasons
▸Sparse computation (compared to full deep

networks)
▸Shared parameters (only a small number of shared

parameters)
▸Translation invariance

David I. Inouye 2

Motivation for convolution networks:
Gabor functions derived from neuroscience
experiments are simple convolutional filters [DL, ch. 9]

David I. Inouye 3

Convolutional networks automatically learn filters
similar to Gabor functions [DL, ch. 9]

David I. Inouye 4

1D convolutions are similar but slightly different
than signal processing / math convolutions

David I. Inouye 5

1 2 3 2 5 1

1 2

𝑥

𝑓

5 8 7 12 7𝑦

Padding or stride parameters alter the
computation and output shape

David I. Inouye 6

1 2 3 2 5 1

1 2

𝑥

𝑓

5 7 7𝑦

Stride of 2

1D convolutions are similar but slightly different
than signal processing / math convolutions

David I. Inouye 7

1 2 3 2 5 1

1 2

𝑥

𝑓

2 5 8 7 12 7 1𝑦

Zero padding of 1

Switch to demo of 1D

David I. Inouye 8

2D convolutions are simple generalizations to
matrices

David I. Inouye 9

𝑥

𝑓

𝑦 𝑦

Stride of 2

Switch to demo of 2D

David I. Inouye 10

2D convolutions with channels are like simple 2D
convolutions but all arrays have a channel dimension

David I. Inouye 11

𝑥 ∈ ℛ𝑐×ℎ×𝑤

𝑦 ∈ ℛ1×ℎ′×𝑤′

𝑓 ∈ ℛ𝑐×𝑓ℎ×𝑓𝑤

“𝑓ℎ × 𝑓𝑤 convolution” (channel dimension is assumed)

Multiple convolutions increase the output
channel dimension

David I. Inouye 12

𝑥 ∈ ℛ𝑐×ℎ×𝑤

𝑦 ∈ ℛ4×ℎ′×𝑤′

𝑓𝑗 ∈ ℛ𝑐×𝑓ℎ×𝑓𝑤

Reasoning about input and output shapes is
important for debugging and designing CNNs

▸Convolution input parameters
▸𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑛 = 𝐶𝑖𝑛

▸𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑂𝑢𝑡 = 𝐶𝑜𝑢𝑡 (𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 # 𝑓𝑖𝑙𝑡𝑒𝑟𝑠)
▸𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒 = 𝐾0, 𝐾1

▸𝑆𝑡𝑟𝑖𝑑𝑒 = 𝑆0, 𝑆1

▸𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑃0, 𝑃1

▸𝐶𝑜𝑢𝑡 = # 𝑓𝑖𝑙𝑡𝑒𝑟𝑠
▸Output spatial dimensions

▸𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛+2 𝑃0−𝐾0

𝑆0
+ 1

▸𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛+2 𝑃1−𝐾1

𝑆1
+ 1

▸Output batch dimension should match input

David I. Inouye 13

Common convolution configurations

▸Output has same height and width as input
▸1 x 1 convolution with padding=0, stride=1
▸3 x 3 convolution with padding=1, stride=1
▸5 x 5 convolution with padding=2, stride=1

▸Output has half the height and width of input
▸2 x 2 convolution with padding=0, stride=2
▸4 x 4 convolution with padding=1, stride=2

David I. Inouye 14

𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛 + 2 𝑃0 − 𝐾0

𝑆0
+ 1

Switch to demo of 2D with channels, activation
functions, and pooling

David I. Inouye 15

Transposed convolution can be used to upsample an
tensor/image to have higher dimensions

▸Also known as:
▸Fractionally-strided convolution
▸Improperly, deconvolution

▸Remember: Convolution is like matrix
multiplication

𝑦 = 𝑥 ∗ 𝑓 ⇔ vec 𝑦 = 𝐴𝑓vec(𝑥)

▸ Transpose convolution is the transpose of 𝐴𝑓:
vec 𝑦 = 𝐴𝑓

𝑇vec(𝑥)

David I. Inouye 16

Convolution operator with corresponding matrix

David I. Inouye 17

(∗) =

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

Transposed convolution operator with
corresponding matrix

David I. Inouye 18

=

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

∗
Reshaped output

Reshaped input

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

Transposed convolution can be equivalent to a simple
convolution with zero rows/columns added
(added zeros simulate fractional strides)

David I. Inouye 19

(∗) =

Original
input

Zero-padded input

Kernel
Output

(Note: More modern upsampling layers
upsample by imputing/interpolating non-zeros
and then apply convolution.)

Computing tensor shapes with transpose
convolutions

▸Channels is computed the same as convolution

▸For spatial dimensions, you switch the input and output dimensions
▸Reason about the standard convolution dimensions
▸And then flip input and output dimensions

▸Like convolutions, output has same height and width as input
▸1 x 1 convolution with padding=0, stride=1
▸3 x 3 convolution with padding=1, stride=1
▸(Stride of 1 is equivalent to stride of 1 convolution)

▸Output has double (upsample) the height and width of input
▸2 x 2 convolution with padding=0, stride=2
▸4 x 4 convolution with padding=1, stride=2
▸6 x 6 convolution with padding=2, stride=2

David I. Inouye 20

Demo of CIFAR-10 CNN in Pytorch

David I. Inouye 21

Two important modern CNN
architecture concepts:

batch normalization and
residual networks

David I. Inouye 22

Batch normalization dynamically normalizes each
feature to have zero mean and unit variance

▸Basic idea: Normalize input batch of each layer during the
forward pass

1. Input is minibatch of data 𝑋𝑡 ∈ ℝ𝑚×𝑑 at iteration 𝑡
2. Compute mean and standard deviation for every feature

𝜇𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 , 𝜎𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 − 𝜇𝑗
𝑡 2

, ∀𝑗 ∈ 1, ⋯ , 𝑑

3. Normalize each feature (note different for every batch)

෤𝑥𝑖,𝑗
𝑡 =

𝑥𝑖,𝑗
𝑡 − 𝜇𝑗

𝑡

𝜎𝑗
𝑡

4. Output ෨𝑋𝑡

David I. Inouye 23

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

Because BatchNorm removes linear effects,
extra linear parameters are also learned

▸The form of this final update is:

෤𝑥𝑖,𝑗
𝑡 =

𝑥𝑖,𝑗
𝑡 − 𝜇𝑗

𝑡

𝜎𝑗
𝑡 ⋅ 𝛾𝑗 + 𝛽𝑗

▸Where 𝛾𝑗 and 𝛽𝑗 are learnable parameters
▸While 𝜇𝑗

𝑡 and 𝜎𝑗
𝑡 are computed from the minibatch

▸But how do we compute 𝜇𝑗
𝑡 and 𝜎𝑗

𝑡 about during
test time (i.e., no minibatch)?

▸Use running average of mean and variance

𝜇𝑟𝑢𝑛
𝑡 = 𝜆𝜇𝑟𝑢𝑛

𝑡−1 + 1 − 𝜆 𝜇𝑏𝑎𝑡𝑐ℎ
𝑡

𝜎2
𝑟𝑢𝑛
𝑡

= 𝜆𝜎2
𝑟𝑢𝑛
𝑡−1

+ 1 − 𝜆 𝜎2
𝑏𝑎𝑡𝑐ℎ
𝑡

David I. Inouye 24

For CNNs, the channel dimension
is treated as a “feature”

▸If the input minibatch tensor is 𝑋𝑡 ∈
ℝ𝑚×𝑐×ℎ×𝑤, then the channel dimension 𝑐 is
treated as a feature:

𝜇𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 , 𝜎𝑗
𝑡 = 𝔼 𝑥𝑗

𝑡 − 𝜇𝑗
𝑡 2

,

∀𝑗 ∈ 1, ⋯ , 𝑐
▸Where the mean is taken over both the batch

dimension 𝑚 and the spatial dimensions ℎ and 𝑤
▸Called “Spatial Batch Normalization”

▸Variants: Instance, Group or Layer
Normalization

David I. Inouye 25

https://pytorch.org/docs/stable/nn.html#normalization-layers

BatchNorm can stabilize and accelerate training
of deep models

▸To use in practice:
▸Only normalize batches during training

(model.train())
▸Turn off after training (model.eval())

▸Uses running average of mean and variance

▸Surprisingly effective at stabilizing training,
reducing training time, and producing better
models

▸Not fully understood why it works

David I. Inouye 26

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

Demo of batch normalization in PyTorch

David I. Inouye 27

Residual networks add the input
to the output of the CNN

▸Most deep model layers have the form:
𝑦 = 𝑓 𝑥

▸Where 𝑓 could be any function including a
convolutional layer like 𝑓 𝑥 = 𝜎 Conv 𝜎 Conv 𝑥

▸Residual layers add back in the input
𝑦 = 𝑓 𝑥 + 𝑥

▸Notice that 𝑓 𝑥 models the difference between 𝑥
and 𝑦 (hence the name residual)

David I. Inouye 28

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 770-778).

A residual network enables deeper
networks because gradient
information can flow between layers

▸A data flow diagram shows the
“shortcut” connections

▸Consider composing 2 residual layers:
▸𝑧 1 = 𝑓1 𝑥 + 𝑥

▸𝑧 2 = 𝑓2 𝑧 1 + 𝑧 1

▸Or, equivalently
𝑧 2 = 𝑓2 𝑓1 𝑥 + 𝑥 + 𝑓1 𝑥 + 𝑥

▸If the residuals = 0, then this is merely
the identity function

David I. Inouye 29

Images from: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 770-778).

Detail: If the dimensionality is not the same, then use
either fully connected layer or convolution layer to match

▸In the 1D case, suppose 𝑓 𝑥 : ℝ𝑑 → ℝ𝑚, then
we need to multiply 𝑥 by linear operator to
match the dimension

𝑦 = 𝑓 𝑥 + 𝑊𝑥, where 𝑊 ∈ ℝ𝑚×𝑑

▸Similarly, for images, if 𝑓 𝑥 : ℝ𝑐×ℎ×𝑤 →
ℝ𝑐′×ℎ′×𝑤′

, we can apply a convolution layer to
match the dimensions

𝑦 = 𝑓 𝑥 + conv 𝑥 ,
where conv ⋅ : ℝ𝑐×ℎ×𝑤 → ℝ𝑐′×ℎ′×𝑤′

David I. Inouye 30

Demo of CNN with very simple residual network

David I. Inouye 31

U-Nets have an autoencoder structure with skip
connections for semantic segmentation task

David I. Inouye 32

Figure from: Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

▸Concatenation +
convolution rather
than residual skip
connections

▸Any (pretrained)
classification
backbone can be
used for encoder

▸State-of-the-art
semantic
segmentation are
based on this idea

	Default Section
	Slide 0: Convolutional Neural Networks (CNN)
	Slide 2: Why convolutional networks?
	Slide 3: Motivation for convolution networks: Gabor functions derived from neuroscience experiments are simple convolutional filters [DL, ch. 9]
	Slide 4: Convolutional networks automatically learn filters similar to Gabor functions [DL, ch. 9]
	Slide 5: 1D convolutions are similar but slightly different than signal processing / math convolutions
	Slide 6: Padding or stride parameters alter the computation and output shape
	Slide 7: 1D convolutions are similar but slightly different than signal processing / math convolutions
	Slide 8: Switch to demo of 1D
	Slide 9: 2D convolutions are simple generalizations to matrices
	Slide 10: Switch to demo of 2D
	Slide 11: 2D convolutions with channels are like simple 2D convolutions but all arrays have a channel dimension
	Slide 12: Multiple convolutions increase the output channel dimension
	Slide 13: Reasoning about input and output shapes is important for debugging and designing CNNs
	Slide 14: Common convolution configurations
	Slide 15: Switch to demo of 2D with channels, activation functions, and pooling
	Slide 16: Transposed convolution can be used to upsample an tensor/image to have higher dimensions
	Slide 17: Convolution operator with corresponding matrix
	Slide 18: Transposed convolution operator with corresponding matrix
	Slide 19: Transposed convolution can be equivalent to a simple convolution with zero rows/columns added (added zeros simulate fractional strides)
	Slide 20: Computing tensor shapes with transpose convolutions
	Slide 21: Demo of CIFAR-10 CNN in Pytorch
	Slide 22: Two important modern CNN architecture concepts: batch normalization and residual networks
	Slide 23: Batch normalization dynamically normalizes each feature to have zero mean and unit variance
	Slide 24: Because BatchNorm removes linear effects, extra linear parameters are also learned
	Slide 25: For CNNs, the channel dimension is treated as a “feature”
	Slide 26: BatchNorm can stabilize and accelerate training of deep models
	Slide 27: Demo of batch normalization in PyTorch
	Slide 28: Residual networks add the input to the output of the CNN
	Slide 29: A residual network enables deeper networks because gradient information can flow between layers
	Slide 30: Detail: If the dimensionality is not the same, then use either fully connected layer or convolution layer to match
	Slide 31: Demo of CNN with very simple residual network
	Slide 32: U-Nets have an autoencoder structure with skip connections for semantic segmentation task

