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Diffusion models have become state-of-the-art
for generative modeling

* See demo: https:/ /huggingtace.co/spaces/ stabilityai/stable-diffusion
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Overview

* Model
* Diffusion models as hierarchical VAEs with fixed encoders
* Training
* Perspective 1: Reweighted joint ELBO
* Perspective 2: Multiple VAE ELBOs with shared parameters
* Perspective 3: Multiple denoising AEs with shared parameters
* Sampling
* VAE-based Markov sampling (DDPM)
* Implicit (deterministic) sampling (DDIM)



Model: Diffusion models define
forward and reverse diffusion processes

Simple VAE
(Same-Dimension)

* Diffusion models can be viewed as hierarchical VAEs
* Forward process = hierarchical encoder
* Reverse process = hierarchical decoder

* Several critical differences from VAE
* Involves multiple latent representations rather than one
* Hierarchical encoder is fixed (i.e., no trainable parameters)
* Parameters 0 are shared between decoder steps

Hierarchical Encoder — o-=====s(  o====si o= D e L S —

Hierarchical Decoder

) p(XT)P(Xo:(T—1)|xT)
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4
David 1. Inouye, Purdue University

Image from: https:/ /arxiv.org/pdf/2011.13456.pdf



Model: The forward process 1s defined by a fixed
Markov transition distribution q(x¢|xs_1)

* The forward process starts at the data distribution, 1.e.,
q(x0) = Paata(X)
* Define forward process via Markov transition
Q(xtlxt—l) = N(xt; H = W/,L(t)xt—liz — Wa(t)l)
* where w, (t) and w;(t) can be functions that vary across time ¢

* For simplicity, we will use Wﬂ(t) = 1 and w,(t) = 1 so that above simplifies
q(xelxe—1) = N u=xe1,2=1)

* Notice there are no trainable parameters



Model: The tforward process can be collapsed into
a single step, i.e., q(x¢|xg) is known in closed-form

Distribution-based derivation Random variable derivation
* The joint distribution 1s Gaussian because * By the definition of q(x|x;—q1)
cach of the components are conditionally
Gaussian Xy = X¢_1 + €1 where €,_1 ~ N(0,1)
* q(x1.¢lx0) * Xt = Xe—q1 T €tq
= H§’=1 qCeyrlxer_y) * =Xtz T €t €y
o = qxqlx9)q(xzlx)q(xs]xz) ... * =Xzt €3t €T E
o« = N(xqlxg, DN (x5, DN (x3]x,, 1) ... e = .. =x,+ Zgl_:() €1

* Fact: Adding Gaussian RVs is another

* The marginal of a Gaussian is also Gaussian R dliffllbuted so that
Gaussian, i.e., * Xp =X+ Do € = Xo T+ €

¢ Where & ~ N(0,t - 1)
q(x¢lxe) = N(xes = x, 2 =1t 1) e Thus, x, ~ N'(xo, t - )



Model: The forward process can be collapsed into
a single step, i.e., q(x¢|xg) is known in closed-form

* What does this mean intuitively?

q(xtle) =N(xtuu — xO)Z — TI) < Xt NN(X(),TI)
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Model: The reverse transition conditioned on
X is known in closed form (q(x¢—1|x¢, X0))

* The ideal reverse transition p*(x;_q1|x;) would be the postetior of g
q(xelxe—1)q(xp—1)
q(x¢)

p*(xe—qlxe) = qOxe_qlx) =
* However, this is intractable ®
* However, if conditioned on X, the posterior is tractable
* qlxe_qlxe, x0)
o A Xe—q, X0)qCre—11%0)

Q(xt}xo)
= Cl(xt|xt(—x1)|glc x)t_lle) (Markov property of g, i.e., X¢ only dependent on X¢_q)
_ N(xt;uqzxtt_1,%=I)N(xt_1;u=x0,2=(t—1)-I)

N(xp;u=x9,2=t-I)

0 (rn= (1 Ytz = (1-2)1)

Derivation uses the fact each can be expressed as the exponential of a quadratic function, i.e., a Gaussian. These quadratic functions can be
combined to form a single quadratic in terms of X;_; and then used to derive the mean and variance in terms of t, x; and X.



Model: The reverse transition conditioned on
X is known in closed form (q(x¢—1|x¢, X0))

* What does this mean intuitively?

q(xe—1lxe, x9) = N (xt—1i ) )

Suppose t = 4 | ®

q(xe-1]|xe, Xo) : iy .
P /_’ _____ but derived the conditional inverse q(x;_1|x¢, Xg)

- JOIOESY . JOISEO

Notice that we defined the forward direction q(x¢|x¢—1)
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Model: The reverse process approximates the
posterior transition of g

* Prior distribution p(x7)
* Theory: As T = o0, q(x7) = N (x7; U = Ugatar L = Zgata + T - 1).

* Therefore, we choose a Gaussian prior distribution
(note that this is with our simplified w, (t) and w,(t) and is only approximate if T is finite)

p(xr) & NCxr; it = HaatarE = Zaaea + T+ D (~ q(xr))
* Reverse transition distribution pg(xs—1|x;)

* Theory: As the number of timesteps approaches infinity, 1.e., T — oo, then
q(x;_1|x;) is known to be Gaussian.

* Therefore, we choose the approximate posterior to be Gaussian

(note with finite timesteps the posterior is not Gaussian)

po(xp_q1x¢) & N (xp_q; 0 = ng(xe), 1) (z q(xt—llxt))



Training(1): Reweighted ELLBO simplifies to
predicting noise from noisy input at each time t

* The main idea is to simply optimize the negative ELBO of this VAE
min Eg(xy)| —ELBO(x; pg, q)]

* 'This objective can be simplified to reconstruction error across time

mein Eteq1,.,mhx02: lxo — 1o (%o + &, t)“%

* The - term is from the ELBO derivation, where (g 1s like the decoder and tries to predict the clean X

* The model usually predicts the noise instead of the clean image
* First we rewrite the decoder as the noisy input minus predicted noise: ug(x¢, t) = xp — €9(x¢, t)
* Then, we can rewrite the objective: lxo — g (g, t) ||

o = |lxo — (¢ — €g(xs, t))”z = ||xo = ((xo + &) — €g(xo + &, t))||2 = ||1& — eg(xg + &, )2
* Thus, this objective can be simplified to (full derivation in last slides)
m@in Erer,.. myxoz I€r — €9 (o + &, OI5]

* Where a scaling of —— from the ELBO is dropped for each term
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Training(2): Multiple VAEs with fixed encoder
and shared parameters

m@in Ete{l,...,T},xo,ét[”ét — €g(xp + €&, t)”%]
* etz = Xy and X = X, now let’s define VAE for each t
* Encoders based on t: g, (z|x) = N (x, tI)
* Decoders based on t: pgt(X|Z) = N(Z — tEgt(Z), tI)

(prior p(z) is irrelevant for training)

* For any t, the VAE objective would be:

x — ((x +te) — teg, (x + te)) ||2] = rréitn E,e [”E — €9, (x + te)”z]

© minExe |

* These could all be run in parallelz ,
1 . .

) min [y e [”E — €g,(x + te)”z] o Ete(,.. 136 [”E — €g,(x + tE)”z]

* If parameters @ are shared, i.e., €g . (z) = €y(z,t), the objectives are equivalent!



Training(3): Multiple denoising AEs

mgn IE:te{l ..... T},xo,gt[llét — €g(xp + &, t)”%]
Identity encoders fi(x) = x
Decoders: g¢(z) = z — tep, (2)

Noise added to input: ng(x) = x + te
For any t, the denoising AE objective with MSE would be:

* r%in Eye [”x - gt(ft(x + tE))”;]
t
* =minE,, [llx — (x + te — teg(x + te)||3]
t

+ =minEy [tlle — g(x + toll]
t

Again, global objective equivalent if
e Parameters 6 are shared, i.e., E@t(Z) = eg(z,t)

* All objectives combined where the t-th objective has a weight of t—lz



Sampling(1): DDPM sampling simply samples

the generative model sequentially

1
* Remember: pg(x;_1|x) = N (xt_l‘u = X — < €g (x4, 1), I)

* Sample from prior distribution x7 ~ p(x7)
e Fort=T,...,1do:

e 7z ~N(0,1)

* Xp_q = Xp —%EQ(Xt, t) + z

* For the last step, we may also quantize using rounding to get integer
value for pixels



Sampling(2): DDIM redefines pg(x;_1|x¢) in terms
of q5(x¢—1]x¢, xg) where X is approximated

* Note that we can approximate X using € (x¢, t)
* Xo & Xg = fo(xs,t) = x; — teg(xe, t)
* The generative model pg can now be defined using g,
N(f(xq1,1),0fD), ift =1
Qo (Xe_11x¢, fo(xe,t)), otherwise
* A special case of DDIM allows for

* Stochastic training but deterministic sampling (1.e., non-stochastic)

* po(xp—qlxy) &

* DDIM also allows different timesteps in sampling compared to
training—thus enabling faster sampling with the €g (¢, t)

* We can use a pretrained version of €g and just



Resources

* Excellent diffusion models blog post
* https://lilianweng.github.io /posts/2021-07-11-diffusion-models/

* Excellent score-based generative models blog post

* https://vang-song.net/blog/2021/score/ (in particular, notice section
Connection to diffusion models and others)

* Score-based comprehensive literature

* https://scorebasedgenerativemodeling.github.io/
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A few important diffusion model works

Diffusion Models: Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilibrium
Thermodynamics.” ICML 2015.

* Sohl-Dickstein et al. [2015] introduced the learning of diffusion models as forward noising and
reverse denoising process
Denoising Diffusion Probabilistic Models (DIDPM): Jonathan Ho et al. “Denoising diffusion
probabilistic models.” NeurIPS 2020.
* Ho etal. [2020] made several key design decisions and connected to Noise-Conditioned Score
Networks (NSCN) [Yang & Ermon, 2019]
DDPM++: Alexander Nichol & Dhatiwal. “Improved Denoising Diffusion Probabilistic Models.”
ICML 2021.
* Makes several engineering improvements over DDPM including faster sampling and better
likelthood
* Denoisin D@%J‘Zbﬂ Implicit Model (DDIM): Jiaming Song et al. “Denoising diffusion implicit
models.” ICLR 2021.

* Song et al. [2020] proposed a non-Markovian sampling procedure that includes a deterministic
variant (note: the training is the same as DDPM)



Related score-based modeling key papers

* Noise-Conditioned Score Networks (NCSN): Yang Song et al. “Generative
Modeling by Estimating Gradients of the Data Distribution.” NeurIPS 2019.

* Trains many score functions (i.e., V,, log p;(x)) at multiple noise levels t and uses
Langevin sampling for generation

* Yang Song et al. “Score-Based Generative Modeling through Stochastic
Ditterential Equations.” ICLR 2021.

e Unifies diffusion and score-based methods under common framework
 (Generalizes DDPM and NCSN to continuous time
* Can convert stochastic diffusion model to continuous normalizing flow

* Tero Karras et al. “Elucidating the Design Space of Ditfusion-Based
Generative Models.” NeurIPS 2022.

* Unifies the key practical/engineering design decisions for diffusion models



Key Derivations
(ttme permitting)



Training(1): Minimizing joint negative ELBO
across all timesteps

* Remember the negative evidence lower bound (ELBO) from VAEs

pg(x,2)
—ELBO(x; pg,qf) = Iqu [—log q;](zlx) = [qu[—logpg(xlz)] + KL (qf(zlx),pg(z))

Computable, see Computable in closed-form for
reconstruction error slides Gaussian distributions

* Now let X = X and Z = x4.7 in the above equation

pe(xo,X1.1)
a(X1.7]%o )
» = E,[—logpg (xolx1.r)] + KL(q(xy.7l%0), po (x1.7))

* = Eq(x, 1x) [~ 108 Do (xolx1)] + KL(q(x1.r1%0), po(x1.7))
(Markov property)

* —ELBO(x¢; Pg,q) = Eq(xy.0) [—log



LLemma: Chain rule of KI.

Chain rule of KIL.
. KL(q(x) p(x)) Z Eq(x.)) KL(CI(Xi|x<i);P(Xi|x<i))_

Inverted chain rule of KL (equlvalent)

+ KL(q(0),p(0) = T Eqees p[KL(q(xilx50), pCxilxs))]

Derivation for two dimensions

q(xq1,x2)
p(x1,%2)

KL(CI(xpxz) P(x1»x2)) Eq (e, ;) _log

o q(x1)q(xz]x1)
= Eqex) | Eqeayixp) [lo p(xl)p(lexl)

q(x1)
35 * Bataiey 108

= KL(q(xy), p(x1)) + Eq(x,) [KL(q(lexl),p(lexl))]

q(xz le)]]

* = ]Eq(xl) _log p(x2|x1)




Dittusion ELBO: Simplification using KI.
chain rule and Markov property

For notational simplicity, let X741 be a dummy random variable that is

¢ K L (q (x 1:T | X 0 ) ) pe (X 1 T)) independent of all other random variables (the distribution does not matter).

o = N1 Egenixg) [KL(q Ot |5, x0), Do (x| x5))| (KL chain rule)

o — ZT+1
Cl(xzt |x0)

:KL(CI(xt—1 |X>¢, X0), Do (Xt—1 |x2t))]

— T+1 [
* = 222 Eqlea, 1ol

KL(q(xe—q]%0 %0), P (xe—1]x:))|  OMarkov properties

ZTH Eqx, |x0)[KL(q(xt 11%6, x0), o (x4 1|xt))]
— Zt=2 IEq(xt |%0) [KL(q(xt—llxt'xO): Po (xt—llxt))] T KL(CI(lexO)J p(xT))

Proof of Markov property for q and an alternative derivation that is usually used are provided at the end.



Diffusion ELLBO: A reconstruction term and
many KL terms

« —ELBO(xq; pg, q)
* = E,[—logpe(xolxy.7)] + KL(CI(X1:T|X0)»Z99(X1:T))

(X = xgand z = xq.7)

* = Eq(x, ) [ — 108 Do (xolx1)] + KL(q(x1.rlx0), Do (x1.7))
(Markov property)

* = Eq(x,1xo) [— 108 Do (x0lx1)] (Lo Initial reconstruction term, e.g., dequantization)
* + ZLZ Eq e 1x0) [KL(CI(xt—1 1x¢, X0), Po (Xe—1 |xt))] (L1 to Ly—q KL terms)
* +KL(C[(xT|x0), p(xT)) (LT “pﬂOI” term, )



The KL terms simplify to MSE between true

posterior mean and predicted mean

e KI. between two (Gaussians

5 2 1 > 1(df o7
+ KL (M (o, 03D, My (1, 021) ) = 5ozl = pollz +3( 7z —d +1og

° KL(q (xX¢—1]|xe %0), Po (X -1 |xt))

0o = (- (1-21). 0010

1

e =g — e Cer, O] + C



The KL term can equivalently be written as
predicting the noise

* We can egumalently rewrite g in terms of X; and the noise & ~ N '(xo, t1)

1 1 1 1 . 1,
* Ug = (1—?)xt +-Xo =(1—Z)xt+;(xt—et) =Xt — <€

* We can also re-parameterize g (X¢, t)
1
¢ pg(xe, t) = xp — - €p(x¢, )
* Now this simplifies to predicting Gaussian noise

* KL(q(xr—1]xe, xo);Pe(xt—ﬂxt)) = 2%12 ”Mq — po(xe, t)”z +C
2

+ C
2

1., 1
Xt — 7€~ (xt = ;Ee(xt; t))

2
_%(ét - Eg(xt, t))”z + C
1

c= e — et OIF+C (=2 ]lug — e D +C)



Training(1): Reweighted ELLBO simplifies to
predicting noise from noisy input at each time t

. mgn Eg(x,)|—ELBO(x0; pg, q)]

¢ = mein Eqxo ) —108Da(x0lx1)] (Lo in practice is dequantization term)
° + Z?:z IE:q(xo,x,;)[KL(CI(th |x¢, X0), Po (X¢—1 |xt))] (Lq to Ly_1 KL terms)
* +E; 0)[1( L(qCxrlxo), pCxr))] (L “prior” term, constant w.r.t. 6)

o« = m@in IECI(X1|xO) [— lOgPe(xo|x1)] T 2’11;22 [Et,xo,Et [ Hgt - EQ(X() T gt’ t)Hil

* In practice, this objective 1s simplified to

m@in [Ete{l,...,T},xO,ét[Hét —€g(xo + &, t)”%]

* By an approximation of Ly with Lq etc.
* And dropping scaling of



Sampling(2): DDIM redefines the forward process
in terms of q(x;_1|x¢, xg) instead of q(x¢|xs—1)

* DDIM notices that the training objective only depends on q(x;|xg) rather
than the joint q(x1.7|x()

* Thus, there exist many joint distributions q(x;.7|Xg) that have the same marginals
q(x¢|xg) as DDPM

* Instead of defining q(x¢|x;—_1), DDIM defines

* q5(x1.71x0) & q5(x7]x0) HZ:=2 qo(Xe—1lx¢, x0)

* qo(x7lxg) & N (x0, T - 1)

* qa(xt—llxt;xo) = N(xt—1;ll = h(Xt,Xo, Ut),Z = Utl) (Not sure the form for our
simple example.)

* DDIM derives that qz(x¢|xg) = q(xf|x0), i.e., it matches the marginals of
DDPM, o =\|ogy,05 ", 07]

* Thus, the same training objective can be used!



Extra dertvations



Lemma: Markov property for q(X;_1|Xs¢, Xo)

q(x¢—11%2¢,%0)

_ q(ag|xe—1,%0)q(x¢—1]%0)

B q(x>¢]xo)

_ q(xXz¢|xe—1)q(xe—1]x0)

B q(x=¢]x0)

_ q(xe—1]xo) HZ’:t Cl(xt'|xt'_1)

q(xtlxo) HZ’=t+1 Q(xt’ |th_1)

_ aCeealxo)aCeelxe—a) Tpr g A2 1%,4)
q(xtlxo) H,tl;l=t+1 q(xt’ |th_1)
o« — q(xe—11x0)q(xe|xe—1,%0)

q(xtlxg)
— q(xt—l |xt1 xO)




Alternative simplification of KL term from

ELLBO

KL(q(xl:Tle); p@(xl:T)) = ]Eq(xl:Tle) llogm

po(x1.1)

e« —F _10 q(x1|xo) iz, a(X¢|X¢—1, Xo)
qCeariXo) | p(er) iz, po(X¢—1x¢)
' = Bt [ B 108 S s
" = Fatarro [T bos G i 8
= B [Soalos G - log L
" = B [Soa o8 G e
" = Bt [T ton RS s

= Z{=2 Eq(x,|xo) [KL(q(xt—llxtl xo)»pe(xt—llxt))] + KL(Q(XT|9C0); p(xT))

. T a(x¢]xo)
t=2108 a(X¢—1|%o)
o = —logq(xq|xy) +logq(x,]xo) — logq(x,|xg)
+log q(x3lxg) -+ + log g (x| xp)
o = —logq(xilxg) + logq(xr|xy)
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