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Domain Counterfactuals (DCF): What would a sample 
look like if  it had been generated in a different domain?

• What would a cell image look like if  
it had been collected at a different 
hospital?

• What would this person’s loan 
application look like if  they were 
elderly rather than young?

• What would this wheat image from 
Germany look like if  it had been 
taken in France?

David I. Inouye, Purdue University
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Domain counterfactuals could improve multiple 
areas of  trustworthy ML

• Explaining distribution shifts

• Counterfactual fairness

• Domain generalization 
/ Out-of-distribution robustness

David I. Inouye, Purdue University
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 [Zhou et al., 2024]

 [Bai et al., 2024, under submission]
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• Explaining distribution shifts

• Counterfactual fairness

• Domain generalization 
(i.e., out-of-distribution robustness)

DCF Applications

• Introduction to DCF estimation

• Theoretic contributions to DCF estimation

• VAE-based practical algorithm for DCF 
estimation

• Results and discussion

DCF Estimation



Explaining distribution shifts can help an ML 
operator mitigate shifts

• Distribution shifts (when 𝑷𝒕𝒓𝒂𝒊𝒏 ≠ 𝑷𝒕𝒆𝒔𝒕) can cause serious decreases in 
model performance during deployment

• Problem: Most prior works focus on only detecting a shift, and do not 
help with “How should an ML operator respond?”

• Should I retrain the model, ignore the shift, gather better data, etc.?

• Our goal: Aid the operator by explaining how 𝑷𝒕𝒓𝒂𝒊𝒏 shifted to 𝑷𝒕𝒆𝒔𝒕

David I. Inouye, Purdue University

5 Kulinski, S., & Inouye, D. I. (2023, July). Towards explaining distribution shifts. In International Conference on Machine Learning (pp. 

17931-17952). PMLR.



We propose shift explanations based on interpretable 
optimal transport and image-to-image translation

David I. Inouye, Purdue University
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 Kulinski, S., & Inouye, D. I. (2023, July). Towards explaining distribution shifts. In International Conference on Machine Learning (pp. 

17931-17952). PMLR.



Yet, our “counterfactuals” were naïve counterfactuals 
without theoretically grounded understanding

• We merely used a StarGAN approach to translate between images

• This relied only on the inductive biases of  the StarGAN architecture and was 
not grounded in causal theory

• The rest of  this presentation will theoretically ground the idea of  
“counterfactual”

David I. Inouye, Purdue University
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• Explaining distribution shifts

• Counterfactual fairness

• Domain generalization 
(i.e., out-of-distribution robustness)

DCF Applications

• Introduction to DCF estimation

• Theoretic contributions to DCF estimation

• VAE-based practical algorithm for DCF 
estimation

• Results and discussion

DCF Estimation



Counterfactual fairness requires 
the same predictions across 
different (counterfactual) worlds

• Counterfactual fairness ensures a model's decision 
is the same even if  we intervene on a protected 
attribute (e.g., race).

• Example: Law school admission for fictional 
characters

• Aladdin (poor) is predicted to have a 50% 
chance to pass the bar in the future.

• What would have been the model’s prediction if  
Aladdin was rich?

• If  the same, then the predictor is fair.

• To answer, we need to formalize causality

David I. Inouye, Purdue University 11

Image credit: ChatGPT + DALL·E 2024-09-02



Background: Causality = 
probability + 
interventions

• Probability alone cannot answer 
questions about causality.

• Example: The use of umbrellas and 
rain are highly correlated.

• Statistical dependency (MI)

• Prediction

• But do umbrellas cause rain or does 
rain cause umbrellas?

• Probability theory cannot help 
us.

• Interventions to the rescue!

David I. Inouye, Purdue University 12



Background: Structural causal models (SCM) 
enable causal reasoning about interventions

• Each causal variable 𝑥𝑖 is assumed to be a deterministic function 𝑓 𝑖  
of  its causal parents 𝑃𝑎 𝑥𝑖  and some exogenous noise 𝜖𝑖 ∼ 𝒩 0,1

• SCM example:

• 𝑥1 = 𝑓 1 𝜖1 = 2𝜖1

• 𝑥2 = 𝑓 2 𝜖2, 𝑥1 = 𝑥1 + 𝜖2

• 𝑥3 = 𝑓 3 𝜖3, 𝑥1, 𝑥2 = 𝑥1𝑥2𝜖3

• Intervened SCM:

• 𝑥1 = 𝑓 1 𝜖1 = 2𝜖1

• 𝑥2 = ሚ𝑓 2 𝜖2, 𝑥1 = 𝑥1
2 + 𝜖2

• 𝑥3 = 𝑓 3 𝜖3, 𝑥1, 𝑥2 = 𝑥1 𝑥2𝜖3

David I. Inouye, Purdue University
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Background:
Counterfactuals bridge two causal worlds
• Counterfactuals consider the distribution of  

variables in one world given evidence from an 
alternate world

• Counterfactuals can be formed in 3 steps 
(Example evidence: 𝑥1 = 2, 𝑥2 = 1, 𝑥3 = 3)

1. Abduction – Infer the exogenous noise 𝜖𝑖 based 
on the evidence in original world.

• 𝜖1 =
𝑥1

2
= 1, 𝜖2 = 𝑥2 − 𝑥1 = −1, 𝜖3 =

𝑥3

𝑥1𝑥2
=

3

2

2. Action – Change from original to intervened 
world.

3. Predict – Generate new values based on inferred 
exogenous noise.

• 𝑥1 = 2𝜖1 = 2, 𝑥2 = 𝑥1
2 + 𝜖2 = 3, 𝑥3 = 𝑥1 𝑥2𝜖3 = 9

David I. Inouye, Purdue University
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𝑥p𝜖p

𝜖r = 𝜖𝑝 𝑥p→r

Abduction

Action

Prediction



Total effect (TE) measures the expected difference 
between factual and counterfactual predictions

• A stochastic predictor 𝑌 = 𝜙 𝑋, 𝐴  is counterfactually fair if  and only if:

𝑝 𝑌 𝑋 = 𝑥, 𝐴 = 𝑎 = 𝑝 𝑌1−𝑎 𝑋 = 𝑥, 𝐴 = 𝑎 , ∀ 𝑥, 𝑎
 

• Total effect (TE) for binary classification quantifies the violation of  
counterfactual fairness:

𝑇𝐸 ≔ 𝔼 𝑌 − 𝑌1−𝐴 = 𝔼𝑋,𝐴 𝜙 𝑋, 𝐴 − 𝜙 𝑋1−𝐴, 1 − 𝐴

David I. Inouye, Purdue University
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𝑝 𝜙
∗
∗

∗
∗

= 𝑝 𝜙
∗
∗

∗
∗

 Zhou, Z., Liu, T., Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. I. (2024). Counterfactual Fairness by Combining Factual and 

Counterfactual Predictions. NeurIPS 2024.



The optimal counterfactually fair classifier mixes 
the factual and counterfactual predictions
• The counterfactually fair prediction problem is:

min
𝜙

𝔼 ℓ 𝜙 𝑋, 𝐴 , 𝑌

s. t.  𝑇𝐸 𝜙 = 0

David I. Inouye, Purdue University
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Theorem 3.3 & 3.4 (informal): The optimal counterfactually fair predictor mixes the 

factual and counterfactual predictions:

𝜙𝐶𝐹
∗ 𝑥, 𝑎 ≔ 𝑝 𝑎 𝜙∗ 𝑥, 𝑎 + 𝑝 1 − 𝑎 𝜙∗ 𝑥1−𝑎 , 1 − 𝑎  ,

where 𝜙∗ 𝑥, 𝑎 ≔ argmin𝜙 𝔼 ℓ 𝜙 𝑋, 𝐴 , 𝑌  is the (unfair) optimal predictor, and 

the excess risk for classification is:

ℛ𝐶𝐹
∗ − ℛ∗ = 𝐼 𝐴, 𝑌 𝑈  .

 Zhou, Z., Liu, T., Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. I. (2024). Counterfactual Fairness by Combining Factual and 

Counterfactual Predictions. NeurIPS 2024.



The optimal classifier forces each 
counterfactual pair to have the same prediction

David I. Inouye, Purdue University
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The (unfair) optimal classifier would 

achieve 100% accuracy on this 

dataset.

For fairness, the factual and 

counterfactual predictions must be 

the equal (i.e., both ends of lines 

must have same prediction).

Optimal fair must average the factual 

and counterfactual predictions when 

they differ.

 Zhou, Z., Liu, T., Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. I. (2024). Counterfactual Fairness by Combining Factual and 

Counterfactual Predictions. NeurIPS 2024.



Our Plug-in Counterfactual (PCF) method enables a 
better tradeoff between accuracy and fairness

David I. Inouye, Purdue University
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• Plug-in Counterfactual 
(PCF)

• Estimate counterfactuals

• Estimate (unfair) classifier

• Plug-in estimates to optimal 
fair predictor formula

Our regression results on a simulated law school fairness dataset 

demonstrates that PCF can provide a better tradeoff compared to 

other methods and has the lowest TE (lower is better).

 Zhou, Z., Liu, T., Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. I. (2024). Counterfactual Fairness by Combining Factual and 

Counterfactual Predictions. NeurIPS 2024.
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• Explaining distribution shifts

• Counterfactual fairness

• Domain generalization 
(i.e., out-of-distribution robustness)

DCF Applications

• Introduction to DCF estimation

• Theoretic contributions to DCF estimation

• VAE-based practical algorithm for DCF 
estimation

• Results and discussion

DCF Estimation



Background: Domain generalization (DG) aims to 
predict accurately even under distribution shift

David I. Inouye, Purdue University
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Figure from Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild 

distribution shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.
  Bai, R., Bagchi, S., & Inouye, D. I. (2023). Benchmarking Algorithms for Federated Domain Generalization. arXiv preprint arXiv:2307.04942.



ERM often wins. Perhaps DG is too difficult.
What is the value of  different kinds of  data?

• Add labeled test domain samples
• Clearly a good idea but not always practical

• Also, it’s not really DG anymore

• Add unlabeled test domain samples
• This becomes multi-source domain adaptation

• Requires adapting to each new test domain

• Our proposal: Add (approximate) counterfactual pairs within training 
domains

• No test domain data required

• Insight 1: Matching counterfactual pairs can provably generalize to certain shifts.

• Insight 2: Only a small number of pairs needed. (few-shot setting)

David I. Inouye, Purdue University

23 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



We focus on spurious correlation DG scenarios 
for linear SCMs

• Assumption 1: The intervened variables between domains are 
not ancestors of the target variable, i.e., intervened are spuriously 
correlated. 

𝐼 ℱ ∩ Anc 𝑦 = ∅

• Assumption 2: Test domains 𝑓+ intervene on same variables 
or descendants as seen in the training domains ℱ.

𝐼 ℱ ∪ 𝑓+ ⊆ 𝐼 ℱ ∪ Desc 𝐼 ℱ
 

• Assumption 3: The SCM is linear.

• 𝑢𝑧 , 𝑢𝑥 ∼ ExogenousNoiseDistribution
• 𝑧𝑑 = 𝐴𝑑𝑢𝑧       (𝐴𝑑  is different between domains)
• 𝑥𝑑 = 𝐵𝑧𝑑 + 𝑢𝑥        (𝐵 is shared between domains)

• 𝑦 ∼ Bernoulli 𝜎 𝑐𝑇𝑧𝑑      (𝑐 is shared between domains)

David I. Inouye, Purdue University
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𝑥

𝑢𝑥

𝑢𝑧

𝑦

𝑧2𝑧1 𝑧4𝑧3 𝑧6𝑧5

Latent space

Observed space

 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



Counterfactual Matching (CFM) simply adds a 
counterfactual constraint to ERM

• Given training domain data 𝑥 𝑖 , 𝑦 𝑖
𝑖=1

𝑛
 and counterfactual pairs 

𝑥𝑑
𝑗

, 𝑥
𝑑→𝑑′

𝑗

𝑗=1

𝑘
, the counterfactual matching problem (CFM) is defined as:

min
𝜙

 
1

𝑛
σ𝑖=1

𝑛 ℓ 𝜙 𝑥 𝑖 , 𝑦 𝑖

 𝑠. 𝑡.  𝜙 𝑥𝑑
𝑗

− 𝜙 𝑥
𝑑→𝑑′

𝑗
= 0, ∀𝑗 

• This is simply ERM + a constraint that predictions for counterfactual pairs match

• Can the learned classifier generalize to new domains?

David I. Inouye, Purdue University

25 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



ERM classifier on training domains may 
depend on spurious features

• The ERM classifier does very well 
on the training domains

David I. Inouye, Purdue University

26 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



The ERM classifier may not be robust to 
spurious feature changes

• However, a test domain can 
clearly show that this classifier is 
not robust to spurious feature 
shifts

David I. Inouye, Purdue University

27 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



Intuition: Each counterfactual pair can 
eliminate one spurious dimension

• The CFM constraint forces the 
classifier to be orthogonal to the 
counterfactual difference

𝜙 𝑥𝑑
𝑗

− 𝜙 𝑥
𝑑→𝑑′

𝑗
= 0

⇔ 𝑐∗𝑇 𝑥𝑑
𝑗

− 𝑥
𝑑→𝑑′

𝑗
= 0

• Counterfactuals provide a data-
driven constraints that correspond 
spurious feature directions

David I. Inouye, Purdue University

28 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



Modified CFM finds DG robust solutions
even with noisy or approximate counterfactuals

• Intuition

• First find best rank 𝑟 subspace of noisy counterfactual differences

• Make classifier orthogonal to this subspace

• For imperfect counterfactuals 𝑥
𝑑→𝑑′

1
≈ 𝑥

𝑑→𝑑′
1 , the modified CFM is:

min
𝑐

 
1

𝑛
σ𝑖=1

𝑛 ℓ 𝑐𝑇𝑥 𝑖 , 𝑦 𝑖

 𝑠. 𝑡.  𝑐𝑇 ෩𝑈𝑟 = 0 

• Where ෩𝑈𝑟 are the 𝑟 largest left singular vectors of ෩Δ

David I. Inouye, Purdue University
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෩Δ =

𝑥𝑑
1

− 𝑥
𝑑→𝑑′

1

𝑥𝑑
1

− 𝑥
𝑑→𝑑′

1

⋮

𝑥𝑑
𝑘

− 𝑥
𝑑→𝑑′

𝑘

 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



The test domain risk is bounded by the training 
risk and a subspace comparison term

• The first term is simply the training risk.

• 𝜆1
+ corresponds to the hardness of the test domain.

(i.e., how how far it is from the training domains)

• The last part quantifies how much of the spurious feature space is ignored by classifier.
(i.e., the projection of the spurious subspace 𝑈 ሚ𝒮 onto the orthogonal subspace ෩𝑈𝑟)

David I. Inouye, Purdue University
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Lemma: Given assumptions 1-3 and letting ሚ𝒮 ≔ 𝐼 ℱ ∪ Desc 𝐼 ℱ  denote the 
intervened features, the test domain risk with MSE is bounded as:

R𝑑+ 𝑐 ≔ 𝔼𝑝 𝑥
𝑑+ ,𝑦 𝑐𝑇𝑥𝑑+ − 𝑦 2

 ≤ 2𝔼𝑝 𝑑 𝑝 𝑥𝑑,𝑦 𝑐𝑇𝑥𝑑 − 𝑦 2  +  2 𝑐 2 ⋅ 𝜆1
+ ⋅ (𝐼 − ෩𝑈𝑟

෩𝑈𝑟
𝑇) 𝑈 ሚ𝒮

2

where 𝜆1
+ is the largest eigenvalue of 𝑀+ ≔  𝔼𝑝 𝑑 𝑝 𝑥

𝑑+ ,𝑥𝑑
𝑥𝑑+ − 𝑥𝑑 𝑥𝑑+ − 𝑥𝑑

𝑇  and 𝑈 ሚ𝒮 

is any orthogonal basis for the subspace corresponding to the ሚ𝒮 latent features.

 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



We bound the DG test risk 
via Davis-Kahan subspace perturbation theory

• Example: If ෩Δ = Δ, then this term is 0 for only 𝑘 ≥ ሚ𝒮  pairs (few-shot setting).

• Example: If ෩Δ = Δ + 𝜖, then the DG error is based on the variance of 𝜖.

David I. Inouye, Purdue University
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Theorem: Given the same assumptions as before and assuming we observe 𝑘 ≥ ሚ𝒮  
counterfactual pairs, the test domain risk is bounded as:

R𝑑+ 𝑐 ≔ 𝔼𝑝 𝑥
𝑑+ ,𝑦 𝑐𝑇𝑥𝑑+ − 𝑦 2

≤ 2𝔼𝑝 𝑑 𝑝 𝑥𝑑,𝑦 𝑐𝑇𝑥𝑑 − 𝑦 2 + 2 𝑐 2
𝜆1

+ ⋅ ෩Δ෩Δ𝑇 − ΔΔ𝑇 2

min
𝑟+1≤𝑗≤𝑚,1≤𝑗′≤ ሚ𝒮

ሚ𝜆𝑗 − 𝜆𝑗′
2

where Δ corresponds to the matrix of perfect/oracle counterfactual pair differences 

and ሚ𝜆𝑗 and 𝜆𝑗′ correspond to the eigenvalues of ෩Δ෩Δ𝑇  and ΔΔ𝑇 respectively.

 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.
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Results on synthetic data 
confirm theory that CFM is optimal

• Baselines

• ERM

• ERM with oracle latent Z

• Invariant Risk Minimization (IRM)

• Our CFM approach can match 
oracle model performance in this 
simple simulated setup

 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



CFM only needs a small number of 
counterfactual pairs

• For linear causal model, we 
conjecture that only 𝐼  pairs are 
needed, where 𝐼  is the intervention 
set size.

• Intuition: 𝑘 pairs uniquely define a 
linear transformation.

• Our initial results suggest that this is 
indeed true.

David I. Inouye, Purdue University
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𝐼 = 80
𝐼 = 50
𝐼 = 20
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 Bai, R., Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 

submission.



Beyond linearity, we show significant improvement 
on realistic tasks with only 240 counterfactual pairs

David I. Inouye, Purdue University
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We outperform ERM by 10% and 

others by 3-4%.

Counterfactual 

Waterbirds dataset is 

a variant of the well-

known Waterbirds 

DG dataset

CF-Waterbirds

y=“water”

e=“water”
y=“water”

e=“land”

y=“land”

e=“water”

y=“water”

e=“land”

y=“land”

e=“water”

y=“land”

e=“land”

Training Training Counterfactual Pair Testing (Min Group)

Our training method 

is significantly more 

stable than other 

DG methods



Counterfactual 
DG open 

questions and 
concluding 

thought
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• Can the theory be extended to non-linear or 
invertible causal models?

• How can we elicit approximate 
counterfactuals in different applications?

• Hypothesis: These domain counterfactuals 
provide a data-driven way to implicitly 
specify task constraints.
(Analogous to class labels that are a data-driven way to 
implicitly specify the task goal.)

36
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Domain 
Counterfactual 
(DCF) 
Applications 
and 
Estimation

David I. Inouye, Purdue University 37

• Explaining distribution shifts

• Counterfactual fairness

• Domain generalization 
(i.e., out-of-distribution robustness)

DCF Applications

• Introduction to DCF estimation

• Theoretic contributions to DCF estimation

• VAE-based practical algorithm for DCF 
estimation

• Results and discussion

DCF Estimation



Observation Func. 

𝑔∗

𝒙 = 𝑔∗ 𝑧1, … , 𝑧𝑚

Background: We consider estimation in the challenging 
case when the causal variables are latent

David I. Inouye, Purdue University
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𝑍2

…

𝑍𝑚

𝑍1

𝜖2

…

𝜖𝑚

𝜖1

Exogenous

Noise

Latent Causal 

Variables

Causal Model 

𝑓∗

𝑧𝑗 = 𝑓∗ 𝜖𝑗, Pa 𝑧𝑗

Observation 𝑋

Latent causal models assume there exists:

1. A causal model 𝑓∗ that maps exogenous noise 𝜖 to latent causal variables 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑚]
2. An observation function 𝑔∗ that maps latent variables to observed variables 𝒙.



Given the ground truth causal models, a domain counterfactual infers 
the exogenous noise and then constructs counterfactual

David I. Inouye, Purdue University
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Domain counterfactuals can be constructed via two 

steps

1. Infer exogenous noise from observation using 

causal model from domain 1.

For invertible models, this is:

𝝐 = 𝑓1
∗−1 𝒛1 = 𝑓1

∗−1 𝑔∗−1 𝒙1

2. Using the recovered exogenous noise 𝝐, apply 

the causal model and shared observation 

function, i.e.,

𝒙1→2 = 𝑔∗ 𝒛2 = 𝑔∗ 𝑓2
∗ 𝝐

For invertible models, these two steps are:

𝒙1→2 = 𝑔∗ 𝑓2
∗ 𝑓1

∗−1 𝑔∗−1 𝒙1

𝑓1
∗−1 𝑔∗−1

𝑍2
1

…

𝑍𝑚
1

𝑍1
1

𝜖2

…

𝜖𝑚

𝜖1
The “factual” 

Aladdin was 

poor.

𝑔∗𝑓2
∗

𝑍2
2

…

𝑍𝑚
2

𝑍1
2 What would 

Aladdin be like 

if he was rich 

instead? 

(counterfactual)

𝑔∗ is assumed to be  shared 

between domains



• If given counterfactual pairs, we could simply use supervised learning

• However, we assume only access to (unpaired) samples from each 
domain

How do you estimate domain counterfactuals 
given only samples from each domain?

David I. Inouye, Purdue University
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… , , … . 𝑖=1
𝑛

መ𝑓

… . 𝑖=1
𝑛𝐴 … . 𝑖=1

𝑛𝐵



How do you estimate domain counterfactuals 
given only samples from each domain?

Constructive approach

• Goal: Prove that you can recover 𝑔∗ 
and 𝑓∗ (causal discovery)

• And then construct counterfactual 
(causal inference)

• Method: Determine necessary and 
sufficient conditions for recovery

• Problem: Assumptions are often too 
strong for realistic problems.

Hope-for-the-best approach

• Goal: Train the best model on the 
data you have and hope for the best.

• Method: Train a conditional 
generative model (e.g., VAE) and 
hope the encoder and decoder 
approximately recover 𝑔∗ and 𝑓∗

• Problem: This ignores the core 
challenges and doesn’t work in 
practice.

David I. Inouye, Purdue University
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Our work tries to bridge the gap between these 
two approaches

• Our theory supports the following main claims

1. Recovering the ground truth causal models 𝑓𝑑
∗ and 𝑔∗ is not necessary for 

estimating domain counterfactuals (Theorem 1).

2. We can bound the estimation error based on (Theorem 2):

a) Distribution fit – Does the generative model fit the domain data?

b) Intervention sparsity – If we assume the causal models for each domain only differ w.r.t. 
to a few variables (i.e., sparse), we can bound the extra error based on this assumption.

3. We can assume w.l.o.g. that all intervened causal variables are the last 
variables.

David I. Inouye, Purdue University
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𝑧1, 𝑧2, … , 𝑧𝑚−𝑘 𝑧𝑚−𝑘+1, … , 𝑧𝑚



DCF estimation error is bounded by 
distribution fit and intervention sparsity

• Informally, the DCF error can be decomposed into two terms:

• Distribution fit (B) – How far are the generated distributions from the observed 
distributions?

• Intervention sparsity (D) – What is the worst case ILD model for a target 
intervention sparsity 𝑘?

David I. Inouye, Purdue University
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ො𝑔, ℱ

𝑔∗, ℱ∗

B

A

C D

Distributionally equivalent Different intervention sparsity

𝑘 > 𝑘∗

𝑘 = 𝑘∗

𝑘 < 𝑘∗

𝐴 ≤ 𝐵 + 𝐶 ≤ 𝐵 + 𝐷



DCF estimation simplifies to optimizing VAE 
with MLE and sparse intervention constraint

• Our ILD objective given max intervention sparsity 𝑘

min
𝑔,ℱ

𝔼𝑝(𝒙,𝑑) − log 𝑞𝑔,ℱ 𝒙, 𝑑  𝑠. 𝑡. 𝑓𝑑 ≤𝑚−𝑘 = 𝑓𝑑′ ≤𝑚−𝑘  , ∀𝑑 ≠ 𝑑′.

 

• Normalizing flows or VAEs can be used here

• Shared parameters for 𝑔 and the first 𝑚 − 𝑘 variables of 𝑓

David I. Inouye, Purdue University
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𝑓𝑑,𝜎

𝑓𝑑,𝜇

𝑓𝑑



To generate counterfactuals, we use encoder 
from domain A and decoder from domain B

David I. Inouye, Purdue University
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𝑓𝑑,𝜎

𝑓𝑑,𝜇

𝑓𝑑

𝑓𝑑′,𝜎

𝑓𝑑′,𝜇

𝑓𝑑′

Counterfactual uses encoder from domain A for 

abduction to recover 𝜖 but decoder from domain B for 

action/prediction to generate 𝑥𝐴→𝐵



Qualitatively, our approach preserves changes the 
domain while preserving other semantic information

David I. Inouye, Purdue University

47

Counterfactuals - Should only change shape while keeping other variables constant.

2 factual examples from each domain



Our sparse ILD improves upon all 
counterfactual metrics compared to baselines

David I. Inouye, Purdue University
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Conclusion 
and 
discussion

David I. Inouye, Purdue University 49

DCFs can be used for 
trustworthy ML 
applications

Explaining distribution 
shifts

Counterfactual fairness

Domain generalization

Estimating DCFs is challenging but 
potentially feasible in certain 
circumstances

Much more work to be done on the 
estimation and use of DCFs!



Thanks for listening!

David I. Inouye, Purdue University
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𝑓𝑑,𝜎

𝑓𝑑,𝜇

𝑓𝑑′



Proof sketch for 
noisy counterfactual matching theorem
• Decompose into training and counterfactual error

𝔼 𝑐𝑇𝑥𝑑+ − 𝑦 2

= 𝔼 𝑐𝑇 𝑥𝑑+ + 𝑥𝑑 − 𝑥𝑑 − 𝑦 2

 
= 2𝔼 𝑐𝑇𝑥𝑑 − 𝑦 2 + 2𝔼 𝑐𝑇 𝑥𝑑+ − 𝑥𝑑

2

• Inflate by ෩𝑈𝑟
෩𝑈𝑟

𝑇 because of constraint

𝔼 𝑐𝑇 𝑥𝑑+ − 𝑥𝑑
2 = 𝑐𝑇𝑀+𝑐

= 𝑐𝑇 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑀+ 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑐

• Notice that true M+ can be represented by 𝑈 ሚ𝒮

𝑐𝑇 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑀+ 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑐
 
= 𝑐𝑇 𝐼 − ෩𝑈𝑟

෩𝑈𝑟
𝑇 𝑈 ሚ𝒮𝑄Λ ሚ𝒮 𝑄𝑇𝑈 ሚ𝒮

𝑇 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑐

• Use eigen values to extract upper bound

𝑐𝑇 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑈 ሚ𝒮𝑄Λ ሚ𝒮 𝑄𝑈 ሚ𝒮 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑐
 
≤ 𝑐 2𝜆1

+ 𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑈 ሚ𝒮
2

• Use Davis-Kahan bound noticing that oracle version 
will yield 𝑈 ሚ𝒮

𝐼 − ෩𝑈𝑟
෩𝑈𝑟

𝑇 𝑈 ሚ𝒮
2

≤
෩Δ෩Δ𝑇 − ΔΔ𝑇 2

min
𝑟+1≤𝑗≤𝑚,1≤𝑗′≤ ሚ𝒮

ሚ𝜆𝑗 − 𝜆𝑗′
2

David I. Inouye, Purdue University
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An ILD model joins a shared observation 
function 𝑔 and latent SCMs ℱ

• Informally, autoregressive means that Jacobian is lower triangular.

• The intervention set ℐ 𝑓𝑑 , 𝑓𝑑′  is defined implicitly:

𝑗 ∈ ℐ 𝑓𝑑 , 𝑓𝑑′ ⇔ 𝑓𝑑
−1

𝑗
≠ 𝑓𝑑′

−1

𝑗

• The intervention set of ILD is defined as ℐ ℱ ≔ ′𝑑≠𝑑ڂ ℐ 𝑓𝑑 , 𝑓𝑑′

• Two ILDs are distributionally equivalent 𝑔, ℱ ≃𝐷 𝑔′, ℱ′  iff

𝑝𝒩 𝑓𝑑
−1 ∘ 𝑔−1 𝑥 𝐽𝑓𝑑

−1∘𝑔−1 𝑥 = 𝑝𝒩 𝑓′
𝑑
−1

∘ 𝑔′−1
𝑥 𝐽

𝑓′
𝑑
−1

∘𝑔′−1 𝑥 , ∀𝑑

David I. Inouye, Purdue University
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Defintion 1: An invertible latent domain causal model (ILD) 𝑔, ℱ  joins a shared 

invertible observation function 𝑔: 𝒵 → 𝒳 with a set of 𝑁𝑑 domain-specific latent 

SCMs ℱ = {𝑓𝑑: ℝ𝑚 → 𝒵}𝑑=1
𝑁𝑑 , where 𝑓𝑑 are invertible and autoregressive and 𝝐 ∼

𝒩 0, 𝐼𝑚 .

[Or more formally 𝑔 ∘ 𝑓𝑑 ♯𝒩 0, 𝐼𝑚 = 𝑔′ ∘ 𝑓𝑑
′
♯𝒩 0, 𝐼𝑚 , ∀𝑑 ]



ILD domain counterfactuals are 
a simple function composition

• ILD domain counterfactuals are a simple composition:

𝑥𝑑→𝑑′ = 𝑔 ∘ 𝑓𝑑′ ∘ 𝑓𝑑
−1 ∘ 𝑔−1 𝑥

• Two ILDs are domain counterfactually equivalent 
𝑔, ℱ ≃𝐶 𝑔′, ℱ′  iff all their domain counterfactuals are equal, i.e.,

𝑔 ∘ 𝑓𝑑′ ∘ 𝑓𝑑
−1 ∘ 𝑔−1 = 𝑔′ ∘ 𝑓𝑑′

′ ∘ 𝑓′
𝑑
−1

∘ 𝑔′−1
,  ∀𝑑 ≠ 𝑑′

David I. Inouye, Purdue University
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Q1: Is estimating DCFs easier 
than identifying latent causal 
representations?
Hypothesis 1: Estimating DCFs is easier than estimating latent causal representations.

David I. Inouye, Purdue University
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Counterfactual equivalence characterization proves that 
identifying causal representations is unnecessary for DCFs

• “If” direction is trivial, but “only if” is challenging to prove

• This theorem can be used to

1. Construct counterfactually equivalent models

2. Validate if two models are counterfactually equivalent

• Indeed, recovering the latent variables is unnecessary because ℎ1 could 
be arbitrary

David I. Inouye, Purdue University
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Theorem 1: 𝑔, ℱ ≃𝐶 𝑔′, ℱ′  if and only if there exists invertible functions ℎ1, ℎ2 

such that:    

𝑔′ = 𝑔 ∘ ℎ1
−1 and 𝑓𝑑

′ = ℎ1 ∘ 𝑓𝑑 ∘ ℎ2, ∀𝑑.



Q2: Can we estimate DCFs by 
assuming intervention sparsity? 
Hypothesis 2: Estimating domain counterfactuals could be feasible with weaker 
assumptions, particularly intervention sparsity.

David I. Inouye, Purdue University
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Counterfactual pseudo-metric measures 
distance between ILD models w.r.t. DCFs

• DCF estimation error is the distance to the ground truth ILD 𝑔∗, ℱ∗  
where 𝑝 𝑥, 𝑑  is the ground truth distribution:

𝜀 ො𝑔, ℱ ≔ 𝑑𝐶 ො𝑔, ℱ , 𝑔∗, ℱ∗

David I. Inouye, Purdue University
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Definition 2: Given a joint distribution 𝑝 𝑥, 𝑑 , a counterfactual pseudo-metric 

between two ILDs can be defined as:

𝑑𝐶 𝑔, ℱ , 𝑔′, ℱ′ ≔ 𝔼𝑝 𝑥,𝑑 𝑝 𝑑′ 𝑔 ∘ 𝑓𝑑′ ∘ 𝑓𝑑
−1 ∘ 𝑔−1 𝑥 − 𝑔′ ∘ 𝑓𝑑′

′ ∘ 𝑓′
𝑑
−1 ∘ 𝑔′−1 𝑥

2

2



DCF estimation error is bounded by 
distribution fit and intervention sparsity

• Informally, the DCF error can be decomposed into two terms:

• Distribution fit (B) – How far are the generated distributions from the observed 
distributions?

• Intervention sparsity (D) – What is the worst case ILD model for a target 
intervention sparsity 𝑘?

David I. Inouye, Purdue University
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ො𝑔, ℱ

𝑔∗, ℱ∗

B

A

C D

Distributionally equivalent Different intervention sparsity

𝑘 > 𝑘∗

𝑘 = 𝑘∗

𝑘 < 𝑘∗

𝐴 ≤ 𝐵 + 𝐶 ≤ 𝐵 + 𝐷



Theorem 2 (Counterfactual Error Bound Decomposition). Given a max intervention sparsity 𝑘 ≥ 0 and letting

ℳ 𝑘 ≜  { 𝑔, ℱ : 𝑔, ℱ ≃𝐷 𝑔∗, ℱ∗ , ℐ ℱ ≤ max 𝑘, ℐ ℱ∗ ,
The counterfactual error can be upper bounded as follows:

𝜀 ො𝑔, ℱ ≤ min
𝑔′,ℱ′ ∈ℳ 𝑘

𝑑𝐶 ො𝑔, ℱ , 𝑔′, ℱ′ + max
𝑔, ෨ℱ ∈ℳ 𝑘

𝑑𝐶 𝑔, ෨ℱ , 𝑔∗, ℱ∗

Furthermore, if we assume that the ILD mixing functions are Lipchitz continuous, we can bound the worst-case 

error (B) as follows:

𝐷 ≤ max
𝑔, ෨ℱ ∈ℳ 𝑘

෨𝑘 𝐿 𝑔
2 max

𝑖∈ 𝑚
𝔼 ሚ𝑓𝑑 𝜖 − ሚ𝑓𝑑′ 𝜖

𝑖

2
+ 𝑘∗𝐿𝑔∗

2 max
𝑖∈ 𝑚

𝔼 𝑓𝑑
∗ 𝜖 − 𝑓𝑑′

∗ 𝜖
𝑖

2

1
2

,

where ෨𝑘 ≡ |ℐ( ෨ℱ)| and 𝑘∗ ≡ |ℐ(ℱ∗)|, and the expectation is over 𝑝 𝑑, 𝑑′, 𝜖 ≜ 𝑝 𝑑 𝑝 𝑑′ 𝑝 𝜖 , where 𝑝 𝑑 =
𝑝 𝑑′  and 𝑝 𝜖  is a standard normal.

DCF estimation error is bounded by 
distribution fit and intervention sparsity

David I. Inouye, Purdue University
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(B) Error due to lack of distribution equivalence (D) Worst-case error given distribution equivalence

Error depends on 𝑘 since ෨𝑘 ≤ max{𝑘, 𝑘∗} Error only depends on ground truth model



Q3: How do we estimate DCFs 
practically?
Hypothesis 3: There exist practical methods that can estimate domain 
counterfactuals.

David I. Inouye, Purdue University
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Imposing the sparsity constraint can be 
challenging

• Given sparsity 𝑘, there are 
𝑚
𝑘

 sparsity patterns corresponding to 

different variable subsets

• Naïvely, one could optimize 
𝑚
𝑘

 ILD models independently

• However, optimizing over one “canonical” sparsity pattern is sufficient 
without loss of generality

David I. Inouye, Purdue University
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Thus, we can optimize over canonical ILDs without loss of generality.

For any ILD, an equivalent canonical ILD exists 
where all interventions are the last variables

David I. Inouye, Purdue University
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Definition 5 (Canonical Domain Counterfactual Model). An ILD 𝑔, ℱ  is a 

canonical domain counterfactual model (canonical ILD), denoted by 𝑔, ℱ ∈ 𝒞, if and 

only if the last variables are intervened, i.e., 

𝑔, ℱ ∈ 𝒞 ⇔ ℐ ℱ = 𝑚 − 𝑗: 0 ≤ 𝑗 ≤ ℐ ℱ .

Theorem 3 (Existence of Equivalent Canonical ILD). Given an ILD 𝑔, ℱ , there 

exists a canonical ILD that is both counterfactually and distributionally equivalent to 

𝑔, ℱ  while maintaining the size of the intervention set, i.e.,

∀ 𝑔, ℱ , ∃ 𝑔′, ℱ′ ∈ 𝒞 𝑠. 𝑡. 𝑔′, ℱ′ ≃𝐶,𝐷 𝑔, ℱ  𝑎𝑛𝑑 ℐ ℱ = ℐ ℱ′ .
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