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Domain Counterfactuals (DCF): What would a sample
look like if it had been generated in a different domain?

Pg Pg—1Pa—2 Pas3 Pasq Paoss

* What would a cell image look like if
it had been collected at a different
hospital?

* What would this person’s loan
application look like if they were
elderly rather than young?

* What would this wheat image from
Germany look like 1f 1t had been

taken in France?

David L. Inouye, Purdue University



Domain counterfactuals could improve multiple
areas of trustworthy ML

Pg Pg—1Pa—2 Pas3 Pasq Paoss

St

* Explaining distribution shifts

Tﬁ? [Kulinski & Inouye, 2023]

e Counterfactual fairness

‘ﬂ? [Zhou et al., 2024]

* Domain generalization
/ Out-of-distribution robustness

ﬁ [Bai et al., 2024, under submission]

David L. Inouye, Purdue University



Domain
Counterfactual
(DCH
Applications
and
Estimation

mm D CE Applications

* Explaining distribution shifts
e Counterfactual fairness

* Domain generalization
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* Introduction to DCF estimation

* Theoretic contributions to DCF estimation

* VAE-based practical algorithm for DCF
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* Results and discussion
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Explaining distribution shifts can help an ML
operator mitigate shifts

* Distribution shifts (when P gin # Ptest) can cause serious decreases in
model performance during deployment

* Problem: Most prior works focus on only defecting a shift, and do not
help with “How should an ML operator respond?”

* Should I retrain the model, ighore the shift, gather better data, etc.?

* Our goal: Aid the operator by explaining how Piyqin shifted to Piggy

¢ Kulinski, S., & Inouye, D. I. (2023, July). Towards explaining distribution shifts. In International Conference on Machine Learning (pp.
17931-17952). PMLR.



We propose shift explanations based on interpretable

optimal transport and image-to-image translation

Qk
Are the features Are there
or samples clusters in the
interpretable? samples?
Features are N
interpretable " Solve for
(e.g., sales data) Clusterable cluster ck

maps
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¢ Kulinski, S., & Inouye, D. I. (2023, July). Towards explaining distribution shifts. In International Conference on Machine Learning (pp.
17931-17952). PMLR.
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Yet, our “counterfactuals” were naive counterfactuals
without theoretically grounded understanding

* We merely used a StarGAN approach to translate between images

Baseline Proposed
Random B Distributional

Set | Counterfactual
Explain: }— Explain:

* This relied only on the inductive biases of the StarGAN architecture and was
not grounded in causal theory

* The rest of this presentation will theoretically ground the idea of
“counterfactual”

9
David I. Inouye, Purdue University
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Counterfactual fairness requires
the same predictions across
different (counterfactual) worlds

 Counterfactual fairness ensures a model's decision
is the same even if we intervene on a protected
attribute (e.g, race).

* Example: Law school admission for fictional
characters

* Aladdin (poor) is predicted to have a 50%
chance to pass the bar in the future.

* What would have been the model’s prediction if
Aladdin was rich?

* If the same, then the predictor is fair.

* To answer, we need to formalize causality

David I. Inouye, Purdue University

Image credit: ChatGPT + DALL-E 2024-09-02



Background: Causality =
probability +
interventions

* Probability alone cannot answer
questions about causality.

* Example: The use of umbrellas and
rain are highly correlated.
* Statistical dependency (MI)
* Prediction
* But do umbrellas cause rain or does
rain cause umbrellas?
* Probability theory cannot help

us.

* [nterventions to the rescue!




Background: Structural causal models (SCM)

enable causal reasoning about interventions

* Each causal variable Xx; is assumed to be a deterministic function f (@)
of its causal parents Pa(x;) and some exogenous noise €; ~ N'(0,1)

* SCM example: D

* X1 = f(l)(61) = 2€;
e x; = fP(eg,x1) =21 + 6 D
* X3 = f(3)(63,x1,x2) — X1X2€3 D
* Intervened SCM:

* X1 = f(l)(€1) = 2€;
+ %, = f (e %) =% + 6,
* X3 = f(g)(63»f1»f2) = X1X2€3

David I. Inouye, Purdue University



Background:
Counterfactuals bridge two causal worlds

* Counterfactuals consider the distribution of

variables in one world given evidence from an
alternate world

* Counterfactuals can be formed 1n 3 steps
(Example evidence: x| = 2,x, = 1,x5 = 3)

1. Abduction — Infer the exogenous noise €; based
on the evidence in original world.

X1 X3 3
e c.=—=1 €,=%, —x1 =—1, €, = = =
1 2 ) 2 2 1 ) 3 X1%o 2
2. Action — Change from original to intervened

world.

3. Predict — Generate new values based on inferred
€X0genous noise.

° f1=2€1=2, fzzf%+62=3, f3=f1£263=9

David I. Inouye, Purdue University



Total effect (TE) measures the expected difference
between factual and counterfactual predictions

e A stochastic predictor ¥ = ¢(X, A) is counterfactually fair if and only if:
p(V|¥ =xA=a)=p(Vi_s|¥ =x 4 =0a), V(x, a)

* Total effect (TE) for binary classification quantifies the violation of
counterfactual fairness:

TE = E||V = V_4|] = Exallp(X, 4) = ¢4, 1 — D]

‘if? Zhou, Z., Liu, T\, Bai, R., Gao. ]., Kocaoglu, M., & Inouye, D. 1. (2024). Counterfactual Fairness by Combining Factual and ,
2 Y y g 16
Counterfactual Predictions. NeurIPS 2024.

David I. Inouye, Purdue University



The counterfactually fair classitier mixes
the and counterfactual predictions

* The countertactually fair prediction problem is:

min E[£(¢(X,A4),Y)]
% TE(¢) =0

Theorem 3.3 & 3.4 (informal): The optimal counterfactually fair predictor mixes the
factual and counterfactual predictions:

Gcr (e, a) =p(@)d™(x,a) + p(1 —a)dp (%, 1 — a),
where ¢*(x, @) = argming E[£(p(X, ), V)] is the (unfair) optimal predictor, and

the excess risk for classification is:

Rip —R* =1(4,Y|U).

‘Ef? Zhou, Z., Liu, T\, Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. 1. (2024). Counterfactual Fairness by Combining Factual and
Counterfactual Predictions. NeurIPS 2024.



The optimal classitier forces each
counterfactual pair to have the same prediction

Original Data Counterfactual Pairs Counterfactual Pairs
1.0 A . .
S e SXX . SXX ,
- )ﬁ Y ° %Lo' = ng( o °
[ 0.5 1 % l i x;‘_y 4, i ﬁ;
S ¥ ] ﬁ—'a
Y 0.04 g X a=0,y=0 | T g . . i :
c
[ x a=0,y=1
® _0.5- ggf e a=ly=0 | - ’ . ’
¥ . -1 y=1 o o
_10_%% o’ ’ _>@<>x o’ _>@<>x o’
-1 0 1 -1 0 1 -1 0 1
Input Value X Input Value X Input Value X
The (unfair) optimal classifier would  For fairness, the factual and Optimal fair must average the factual
achieve 100% accuracy on this counterfactual predictions must be  and counterfactual predictions when
dataset. the equal (i.e., both ends of lines they differ.
must have same prediction).
‘if? Zhou, Z., Liu, T, Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. 1. (2024). Counterfactual Fairness by Combining Factual and 19

Counterfactual Predictions. NexrIPS 2024.

David I. Inouye, Purdue University



Our Plug-in Counterfactual (PCF) method enables a

better tradeott between accuracy and fairness

* Plug-in Countertfactual
(PCF)
* Hstimate counterfactuals
* Estimate (unfair) classifier

* Plug-in estimates to optimal
fair predictor formula

1.02

Q0 ), Q 19
o o2 o3 o3
TE

+ 2 X0

lamb
0.0
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0.6

0.8

1.0
method
CFR
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ERM
PCF-CRM

Our regression results on a simulated law school fairness dataset
demonstrates that PCF can provide a better tradeoff compared to
other methods and has the lowest TE (lower 1s better).

‘if? Zhou, Z., Liu, T\, Bai, R., Gao. J., Kocaoglu, M., & Inouye, D. 1. (2024). Counterfactual Fairness by Combining Factual and

Counterfactual Predictions. NexrIPS 2024.

20
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Background: Domain generalization (DG) aims to
predict accurately even under distribution shift

Subpopulation

Domain generalization Domain generalization + subpopulation shift

iwildCam  Camelyon17 ~ RxRx1 ~ OGB-MoPCBA GlobalWheat FMoW Py150
Input (x) camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review code
Prediction (y)  animal species tumor perturbed gene  bioassays wheat head bbox  toxicity land use asset wealth sentiment  autocomplete
Domain (d) camera hospital batch scaffold location, time demographic  time, region country, rural-urban user git repository
# domains 323 5 51 120,084 47 16 16 x5 23 x 2 2,586 8,421
# examples 203,029 455,954 125,510 437,929 6,515 448,000 523,846 19,669 539,502 150,000
What do Black Overall a solid import
and LGBT package that numpy as np
- people have to has a good
Train example do with bicycle quality of
licensing? construction
for the price. norm=np.____
As a Christian, | *loved* my import
| will not be French press, subprocess
patronizing it's so perfect as sp
Test example any of those and came with
businesses. all this fun p=sp.Popen()
stuff! stdout=p.___
Adarted fron Beery et al. Bandi et al. Taylor et al. Hu et al. Davidetal. Borkanetal. Christie et al. Yeh et al. Ni et al. Raychev et al.
P 2020 2018 2019 2020 2021 2019 2018 2020 2019 2016

Figure from Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild
distribution shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.
¢ Bai, R, Bagchi, S., & Inouye, D. I. (2023). Benchmarking Algorithms for Federated Domain Generalization. arXiv preprint arXiv:2307.04942. 29

David L. Inouye, Purdue University



ERM often wins. Perhaps DG 1s too ditficult.
What i1s the value of different kinds of datar?

* Add labeled test domain samples

* Clearly a good i1dea but not always practical
* Also, it’s not really DG anymore

* Add unlabeled test domain samples
* This becomes multi-source domain adaptation
* Requires adapting to each new test domain

* Our proposal: Add (approximate)

* No test domain data required

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under
submission.



We tocus on spurious correlation DG scenarios
for linear SCMs

* Assumption 1: The intervened variables between domains are )
Latent space

not ancestors of the target variable, i.e., intervened are spuriously
correlated.

I(F) N Anc(y) =0

* Assumption 2: Test domains f, intervene on same variables
or descendants as seen in the training domains F.

IFufy)el(F)u

* Assumption 3: The SCM is linear.

* |u,,u,] ~ ExogenousNoiseDistribution

zqg = Agu, (A, is different between domains)
Xq = Bzz; +u, (B isshared between domains)
y ~ Bernoulli(a(CTZd)) (c is shared between domains) \Observed space

‘if? Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 24

submission. David I. Inouye, Purdue University



Counterfactual Matching (CFM) simply adds a

counterfactual constraint to ERM

* Given training domain data {( )}._, and counterfactual pairs
{( xé’ld)}k , the counterfactual matching problem (CFM) 1s defined as:
j=1

mqgn %Z?ﬂf((ﬁ( ),v)

S.t. gb( )—gb(xc(lj_))d,) =0,Vj

* This is simply ERM + a constraint that predictions for counterfactual pairs match

* Can the learned classifier generalize to new domains?

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under
submission.



ERM classifier on training domains may
depend on spurious features

* The ERM classifier does very well

on the training domains =
10
5
X 0
-5
@ Train Dom.1 (y=0)
10 A Train Dom.2 (y=0) °
® TrainDom.1l(y=1) e
=1)

A TrainDom. 2 (y=1
—-15  —e— Counterfactual Pair

-20 -10 0 10 20

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 26

submission. David I. Inouye, Purdue University



The ERM classifier may not be robust to

spurious feature changes

* However, a test domain can

. . . 15
clearly show that this classifier is
not robust to spurious feature 10
shifts i
1,:#":' ERM classifier ¢
. e
X 0 L HLY
—_— -
@ Train Dom.1 (y=0)
-5 A Train Dom. 2 (y=0)
+ Test Domain (y =0)
10 ® TrainDom.1(y=1) °
A TrainDom.2(y=1) e
+ Test Domain (y=1) @
—15  —e— Counterfactual Pair
—-20 -10 0 10 20
Xo
T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 27

submission.

David I. Inouye, Purdue University



Intuition: Each countertactual pair can
eliminate one spurious dimension

* The CFM constraint forces the

classifier to be orthogonal to the 15
counterfactual difference . ‘3@.
S L J
¢ ( ) _ ¢ ( (]) — O 5 t"a!' = cla55|f|erc Robust classifier ¢*
d—d’ % "é;* l 7 .
o' ( = < T R
@ Train Dom 1(y=0) ' fﬁ*_ +
-5 A Train Dom. 2 (y=0) ++
+ Test Domain (y =0) +
. ® TrainDom.1l(y=1) @ N
* Counterfactuals provide a data- L TrinDom 2(y=1) e ép
driven constraints that correspond ;[ FPment=b e
spurious feature directions e o . o .
Xo
‘if? Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 28

submission.

David I. Inouye, Purdue University



Modified CEM finds DG robust solutions

even with noisy or approximate counterfactuals

* [ntuition

* First find best rank 7 subspace of noisy counterfactual differences
* Make classifier orthogonal to this subspace

* For imperfect counterfactuals " , ~ x'" , the modified CFM is:

d—a' ~ Xa-a’s
— ~(1) —_
min Z f(cT ,yW) X?Sd'
s.t. c'U, =0 = _ Fa-d’
* Where U, are the r largest left singular vectors of B2 i

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under
submission.



The test domain risk 1s bounded by the training
risk and a subspace comparison term

Lemma: Given assumptions 1-3 and letting S=I1(F)u DeSC(I (T)) denote the
intervened features, the test domain risk with MSE is bounded as:

Ry+(0) = By, e xge = yI?]
~ ~ 2
< 2Ep(@ypeqmlllcTxa = Y121 + 2llell? - Af - || - T.0F) Ug|

where /., is the largest eigenvalue of M* = Ep(d)p(xd+'xd)[(xd+ —~xd)(xd+ —x4)"] and Us
is any orthogonal basis for the subspace corresponding to the § latent features.

* 'The first term 1s simply the training risk.

* 'The last part quantifies how much of the spurious feature space is ignored by classifier.
(i.e., the projection of the spurious subspace U s onto the orthogonal subspace U;.)

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under
submission.



We bound the DG test risk
via Davis-Kahan subspace perturbation theory

Theorem: Given the same assumptions as before and assuming we observe k = |S |
counterfactual pairs, the test domain risk is bounded as:

Ra+(0) = Ey(y , ) lcTxar — yII7]
EE - aa7|f
_ = 2
r+1sjsn':311,?sj’s|5||/1j N Aj,'

whete A cotresponds to the matrix of perfect/oracle counterfactual pair differences
and 4; and 4;7 cotrespond to the eigenvalues of AA" and AA” respectively.

< 2Ep@ypeam e xa = 1171 + 2[lc]l?

* Example: If A = A, then this term is 0

* Example: If A = A + €, then the DG error is based on the variance of €.

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under
submission.



Results on synthetic data

confirm theory that CFM is optimal

* Baselines
« ERM
* ERM with oracle latent Z
* Invariant Risk Minimization (IRM)

* Our CFM approach can match
oracle model performance in this
simple simulated setup

1.0

0.8

0.6

0.4

0.2

0.0-

ERM

true model

ERMonZ |IRM CF Matching

e Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 33

submission.

David I. Inouye, Purdue University



CEFM only needs a small number of

counterfactual pairs

* For linear causal model, we

conjecture that only 1] pairs are 1.0
needed, where|I| is the intervention
set size. g 0.91
-]
S 0.8
.. ) i =
* Intuition: k pairs uniquely define a g 071
. . @)
linear transformation. S — 1] = 80
& 067 — 1] =50
0 — |I| = 20
. o o . . .5 _

* Our initial results sucoest that this is - | - - | '
. 85 20 40 60 80 100
indeed true. .

Number of counterfactual pairs
‘if? Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under 34

submission.
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Beyond linearity, we show significant improvement
on realistic tasks with only 240 countertactual pairs

Training Training Counterfactual Pair Testing (Min Group)
Counterfactual K DU
Waterbirds dataset is Nt e
a variant of the well-
known Waterbirds CF-Waterbirds
DG dataset y="“land” y="land” y="“land”
e=“land” e=‘“watet” e="“‘water”
adj acc acc avg acc wg Our training method 08{ [[ ’JK
ERM 0.978 0917  0.767 is significantly more
IRM 0.943 0.920 0.849 Stable than Other gﬂ'ﬁ'
GroupDRO 0.934 0.907 0.842 DG i
methods £
ERM+upweighting 0.980 0.936 0.856 d S04
@ — CMP
CFM (OUI'S) 0.978 0.953 0.872 g —— CMP+Upweight
CFM+upweighting 0.980 0.958  0.900 =02 oA Upwelght
GroupDRO
We outperform ERM by 10% and ) . — .
0 50 100 150 200 250 300
Others by 3_40/0. training epochs 35

David I. Inouye, Purdue University
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Counterfactual
DG open
questions and
concluding

thought

* (Can the theory be extended to non-linear or
invertible causal models?

* How can we elicit approximate
counterfactuals in different applications?

* Hypothesis: These domain counterfactuals
provide a data-driven way to implicitly
specity task constraints.

(Analogous to class labels that are a data-driven way to
implicitly specify the task goal.)

T Bai, R, Ji, Y., Zhou, Z., & Inouye, D. I. (2024). Few-shot Counterfactual Matching for Improving Domain Generalization. Under

submission.
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Background: We consider estimation in the challenging

case when the causal variables are latent

Exogenous Latent Causal Observation X
Noise Variables

@ Causal Model
1 f*

7= f"(€Pa(z)

*

g
x=09(z ., 2m)

Latent causal models assume there exists:

1.

A causal model [ that maps exogenous noise € to latent causal variables Z = [z, Z, ..., Z]

2. An observation function g that maps latent variables to observed variables X.

38

David I. Inouye, Purdue University



Given the ground truth cansal models, a domain counterfactual infers
the exogenous noise and then constructs counterfactual

Domain counterfactuals can be constructed via two The “factual”

steps Aladdin was
1. Infer exogenous noise from observation using
causal model from domain 1.
For invertible models, this is:
e=/"")=/"(g"0CN)
What would
2. Using the recovered exogenous noise €, apply Aladdin be like
the causal model and shared observation if he was rich
function, i.e., instead?
X1, = g (z%) = g*(fz*(e)) (counterfactual)

For invertible models, these two steps are:

X150 =09" (fz* ( (g*_l( )))) g is assumed to be sh’z»lred

between domains 0

David I. Inouye, Purdue University



How do you estimate domain counterfactuals
° y °
otven only samples from each domain?

* If given counterfactual pairs, we could simply use supervised learning

(F, DY,  FHn

* However, we assume only access to (unpaired) samples from each
domain

((Fm}2, (32




How do you estimate domain counterfactuals
otven only samples from each domain?

Constructive approach

* Goal: Prove that you can recover g°
and [ (causal discovery)

e And then construct counterfactual
(causal inference)

* Method: Determine necessary and
sufficient conditions for recovery

* Problem: Assumptions are often too
strong for realistic problems.

Hope-for-the-best approach

 Goal: Train the best model on the
data you have and hope for the best.

* Method: Train a conditional
generative model (e.g., VAE) and
hope the encoder and decoder
approximately recover g* and [~

* Problem: This ignores the core
challenges and doesn’t work in
practice.

41
David I. Inouye, Purdue University



Our work tries to bridge the gap between these
two approaches

* Our theory supports the following main claims

1. Recovering the ground truth causal models f; and g* is not necessary for
estimating domain counterfactuals (Theorem 1).

2. We can bound the estimation error based on (Theorem 2):
a)  Distribution fit — Does the generative model fit the domain data?

b) Intervention sparsity — If we assume the causal models for each domain only differ w.r.t.
to a few variables (1.e., sparse), we can bound the extra error based on this assumption.

3. We can assume w.l.o.g. that all intervened causal variables are the last
variables.

43
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DCF estimation error is bounded by
distribution fit and intervention sparsity

* Informally, the DCF error can be decomposed into two terms:

* Distribution fit (B) — How far are the generated distributions from the observed
distributions?

* Intervention sparsity (D) — What is the worst case ILD model for a target
intervention sparsity k?

Distributionally equivalent



DCF estimation simplifies to optimizing VAE
with MILE and sparse intervention constraint

* Our ILD objective given max intervention sparsity K

rgijp Epeay|—logqgr(e, )|  sito [fulomr = [furlcmy vd # d'.

* Normalizing flows or VAEs can be used here
* Shared parameters for g and the first m — k variables of f

Shared Across
Specific Domains

B>

Output: (R4=sphere)

Input: (x4=cylinder g’ = sphere)




To generate counterfactuals, we use encoder
from domain A and decoder from domain B

Shared Across Output: (xd Sphere
Specific Domains

€~N(ug0,) € W) k ‘a»g

Counterfactual uses encoder from domain A for

Input: (xd=cylinder g7 — sphere)E

Input: (x4=cylinder g’ = sphere)

S L (2

abduction to recover € but decoder from domain B for
action/prediction to generate X4-p

Output: (xd sphere
-
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Qualitatively, our approach preserves changes the
domain while preserving other semantic information

2 factual examples from each domain
dl g d2 i d3 i d4 i dl i dZ i d3 i d4- E dl i dZ i d3 i d4-

Baseline: ILD-Independent Baseline: ILD-Dense Ours: ILD-Relax-Can

Counterfactuals - Should only change shape while keeping other variables constant.
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Our sparse ILLD improves upon all
counterfactual metrics compared to baselines

Table 2: Quantitative result for Composition (Comp.), Reversibility (Rev.), Preservation (Pre.),
and Effectiveness (Eff.), where higher is better. CRMNIST, 3D Shapes, Causal3DIdent are averaged
20, 5, 10 runs respectively. Best models are bold (within 1 standard deviation) and due to space
constraint, expanded tables with additional datasets and standard deviation are in Appendix D.5.

CRMNIST 3D Shapes Causal3DIdent
Comp. Rew. Eff. Pre. Comp. Rew. Eff. Pre. Comp. Rew. Eff. Pre.
ILD-Independent | 87.24 59.88 94.65 60.39 | 99.79 3256 94.97 3249 | 88.15 5143 91.05 51.94
ILD-Dense 88.18 62.29 92.72 59.60 | 99.76 32.60 80.92 32.64 | 83.59 49.17 92.17 48.83
ILD-Can | 92.10 85.74 94.48 72.95 | 99.85 79.84 96.72 64.99 | 86.00 79.73 84.15 79.73



DCFs can be used for  Explaining distribution
shifts
trustworthy ML

Counterfactual fairness

apphcati()ﬂs Domain generalization

Conclusion
Estimating DCF's is challenging but

aﬂd potentially feasible in certain

circumstances

discussion

Much more work to be done on the

estimation and use of DCFs!
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Thanks for listening!
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Proof sketch for

noisy counterfactual matching theorem

* Decompose into training and counterfactual error * Use eigen values to extract upper bound
T _ 2 ~ o~ ~ o~
Elllc"xq+ — yll“] cT(1 - U, UT)UsQM5QUs(I - T,UT)c
= E[llc" (xq+ + x4 — xq) — ylI°]

< llelf22%]|(1 - T.TF)Us|"
= 2E[llcTxq — yI12] + 2E[cT Cegr — I o

o e .
L4 . . . .
Inflate by Up Uy because of constraint * Use Davis-Kahan bound noticing that oracle version

E[llcT (xge — x)I1?] = cTM*c will yield U
— (1 = 0,00)M*(1 — U.07)c I(r - 7,07)us|”
* Notice that true M+ can be represented by Ug < 22" - AAT” 2 :
T (1 = ,07)M*(1 - 0,07)c prgymin 14— 2

= c"(1 - U007 )UsQA ;5@ U (I — U.TF )c



An ILD model joins a shared observation
function g and latent SCMs F

Defintion 1: An invertible latent domain cansal model 11.D) (g, F) joins a shared
invertible observation function g: £ — X with a set of N; domain-specific latent

SCMs F ={f;:R™ > Z }Ic\l’il, where f; are invertible and autoregressive and € ~
N(QO, ).

* Informally, autoregressive means that Jacobian is lower triangular.

* The intervention set J(fy, f4/) is defined implicitly:

: - ~1

] € j(fdifd') = [fd 1]] a [fd' ]]
* The intervention set of ILD is defined as J(F) = Ugegr I(fa, fqr)
 Two ILDs are distributionally equivalent (g, F) =, (g', F') iff

p (fi 0 9720 [ prag2 G| = o (F71 097 @) i), W

[Or more formally (g o fd)ﬂ;]\f(O, I,) =(g' o fé)ﬂ;]\f(O, I,), Vd ]




IL.D domain counterfactuals are
a simple function composition

* IL.LD domain counterfactuals are a simple composition:
X — of ,of_lo _1(x)
d—d g°la d g

* Two ILDs are domain counterfactually equivalent
( g,F ) = C ( g, F ") iff all their domain counterfactuals are equal, 1.e.,

— — / / r—1 r—1 /
gefaofiieg =g fpef g, Vvd#d



Q1: Is estimating DCFs easier
than identitying latent causal
representations?



Counterfactual equivalence characterization proves that
identitying causal representations is unnecessary for DCFEs

Theorem 1: (g, F) =, (g',F') if and only if there exists invertible functions h4, h,
such that:
g':gohl_1 and fd’=h1 °fd°h2; vd.

* “If” direction is trivial, but “only i1f” is challenging to prove

e This theorem can be used to
1. Construct counterfactually equivalent models
2. Validate if two models are counterfactually equivalent

* Indeed, recovering the latent variables is unnecessary because hq could

be arbitrary




QQ2: Can we estimate DCFs by

assuming intervention sparsity?:

Hypothesis 2: Estimating domain counterfactuals could be feasible with weaker
assumptions, particularly intervention sparsity.



Counterfactual pseudo-metric measures
distance between ILLD models w.r.t. DCFs

Definition 2: Given a joint distribution p(x, d), a counterfactual pseudo-metric
between two ILLDs can be defined as:

dc((g,F), (g, F)) = \/Ep(x,d)p(d’) [||g ofgrofitog l(x) —g'ofyof'to g'_l(x)”i]

* DCF estimation error is the distance to the ground truth ILD (g*, F*)
where p(x, d) is the ground truth distribution:

e(g§,F) =dc ((g, F), (g*,iF*))



DCF estimation error is bounded by
distribution fit and intervention sparsity

* Informally, the DCF error can be decomposed into two terms:

* Distribution fit (B) — How far are the generated distributions from the observed
distributions?

* Intervention sparsity (D) — What is the worst case ILD model for a target
intervention sparsity k?

Different intervention sparsity



DCF estimation error is bounded by
distribution fit and intervention sparsity

Theorem 2 (Counterfactual Etrror Bound Decomposition). Given a max intervention sparsity k = 0 and letting
M) £ {(g,F): (g, F) =p (" F),|I(F)| < maxik, |I(F)I},

The counterfactual error can be upper bounded as follows:
((@7) <, min o 4 (7). 0" F)) + max de((5.7).(5",7")
\ J \ )
Y \{

(B) Error due to lack of distribution equivalence (D) Worst-case error given distribution equivalence

Furthermore, if we assume that the ILD mixing functions are Lipchitz continuous, we can bound the worst-case

error (B) as follows:
1

2
~ ~ ~ 2 * * * 2
(D) < (\g’%lgﬁ(k)k% max E [[fd(e) — fd'(e)]i]l'l' /\i L2 e E [[fd (€) — fd’(E)]il :

\
Error depends on k since k < max{k, k*} Error only depends on ground truth model

where k = |7(F)| and k* = |I(F*)|, and the expectation is over p(d, d’, €) 2 p(d)p(d")p(e), where p(d) =
p(d") and p(€) is a standard normal.




Q3: How do we estimate DCF's
practically?

Hypothesis 3: There exist practical methods that can estimate domain
counterfactuals.



Imposing the sparsity constraint can be
challenging

* Given sparsity k, there are | ) sparsity patterns corresponding to

different variable subsets

m
* Naively, one could optimize ( k) ILD models independently

* However, optimizing over one “canonical” sparsity pattern is sufficient
without loss of generality



For any ILLD, an equivalent canonical ILLD exists
where all interventions are the last variables

Definition 5 (Canonical Domain Counterfactual Model). An ILD (g, F) is a
canonical domain counterfactual model (canonical IL.D), denoted by (g, F) € C, if and
only if the last variables are intervened, 1.e.,

(g F)eCceI(F)=m—j:0<j<|I(F)|}

Theorem 3 (Existence of Equivalent Canonical ILD). Given an ILD (g,F), there
exists a canonical ILD that is both counterfactually and distributionally equivalent to
(g, F) while maintaining the size of the intervention set, i.e.,

v(g,F),3(g",F') €C s.t. (g",F') =cp (g, F) and [I(F)|=[I(F)|.

Thus, we can optimize over canonical ILLDs without loss of generality.
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