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Outline

▸Loss functions
▸Regression losses
▸Classification losses

▸Regularization
▸“Implicit regularization” by changing 𝑘 in KNN
▸L2 regularization
▸L1 regularization and feature selection

▸Caveat: Very brief introduction to these concepts
▸If you want to learn more, take ECE50024 Machine 

Learning I
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Many machine learning methods minimize the 
average loss (a.k.a. risk minimiza9on)

▸Remember linear regression objec0ve:

𝜃∗ = argmin
"

1
𝑛
+
#$%

&

𝑦# − 𝑓" 𝒙#
'

▸We can rewrite this as:

𝜃∗ = argmin
"

1
𝑛
+
#$%

&

ℓ 𝑦# , 	𝑓" 𝒙#

▸where ℓ 𝑦, $𝑦 = 𝑦 − $𝑦 ! is the loss func)on
▸Many supervised ML can be wri=en as above
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Many supervised ML can be written minimizing 
the average loss

▸Ordinary least squares uses squared loss:

ℓ 𝑦, $𝑦 = 𝑦 − $𝑦 !

▸Logistic regression uses logistic loss

ℓ 𝑦, 𝑝̂ ∈ 0,1 = −𝑦 log 𝑝̂ − 1 − 𝑦 log 1 − 𝑝̂
	
ℓ 𝑦, 𝑧̂ ∈ ℝ = −𝑦 log 𝜎 𝑧̂ − 1 − 𝑦 log 1 − 𝜎 𝑧̂

▸Classification error is known as 0-1 loss

ℓ 𝑦, $𝑦 = 30, if	𝑦 = $𝑦
1, otherwise
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Example: Absolute error is less sensi9ve to 
outliers but is harder to op9mize

▸Absolute error loss is:
ℓ 𝑦, 3𝑦 = |𝑦 − 3𝑦|
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https://www.datacourses.com/evaluation-of-regression-models-in-scikit-learn-846/



Example: The hinge loss is used for learning 
support vector machine (SVM) classifiers

▸Hinge loss is defined as:
ℓ 𝑦, 𝑧̂ = max 0, 1 − 𝑦𝑧̂
Note: 𝑦 ∈ −1, 1

ℓ 𝑦, 𝑧̂ =
91 − 𝑧̂,	 𝑧̂ ≤ 1
	 0, 𝑧̂ > 1	 𝑦 = 1

91 + 𝑧̂, 𝑧̂ ≥ −1
	 0, 𝑧̂ < −1 𝑦 = −1
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Example: The hinge loss is used for learning 
support vector machine (SVM) classifiers

▸Hinge loss is defined as:
ℓ 𝑦, 𝑧̂ = max 0, 1 − 𝑦𝑧̂
Note: 𝑦 ∈ −1, 1
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https://towardsdatascience.com/support-vector-machine-
introduction-to-machine-learning-algorithms-934a444fca47

Classification 
correct

Classification 
incorrect

The hinge loss is the 
closest convex 
approxima;on to 0-1

(Assume y = 1 below)

0-1 loss is non-
convex and hard 
to optimize



Regularization is a common method to improve 
generalization by reducing the complexity of a model

▸𝑘 in KNN can be seen as an 
implicit regularization technique

▸We can use explicit 
regularization for parametric 
models by adding a regularizer 
𝑅 𝜃
min
"
+
#

ℓ 𝑦# , 𝑓" 𝒙# + 𝜆	𝑅 𝜃
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https://kevinzakka.github.io/201
6/07/13/k-nearest-neighbor/

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/


Brief aside: 1D polynomial regression can be 
computed by crea=ng polynomial “pseudo” features

▸Suppose we have 1D input data, i.e., 𝑋 ∈ ℛ&×%

▸We can create pseudo polynomial features, e.g.

𝑋) =
𝑥% 𝑥%' 𝑥%*

𝑥' 𝑥'' 𝑥'*

𝑥* 𝑥** 𝑥**
∈ ℛ&×*

▸Linear regression can then be used to fit a 
polynomial model

𝑦# = 𝜃%𝑥# + 𝜃' 𝑥#' + 𝜃* 𝑥#* …
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Brief aside: 1D polynomial regression can be 
computed by creating polynomial “pseudo” features
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Ridge Regression: A squared norm regularizer 
encourages small parameter values

▸Ridge regression is defined as:
min
"

𝒚 − 𝑋𝜃 '
' + 𝜆 𝜃 '

'
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Regularizing the 
parameters of 1D 
polynomial regression 
helps to improve test 
MSE if chosen 
appropriately.



Lasso Regression: An 𝐿! norm regularizer encourages 
sparsity in the parameters (i.e., zeros)

▸Lasso regression is defined as:
min
"

𝒚 − 𝑋𝜃 '
' + 𝜆 𝜃 %
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Because lasso encourages exact zeros, 
lasso can be used for feature selec2on.

𝑓! 𝑥 = 𝜃"𝑥" + 𝜃#𝑥#
= 0 𝑥" + 𝜃#𝑥#
= 𝜃#𝑥#

𝜃"

𝜃# )𝜃$%&


