Multi-Armed Bandits

David I. Inouye

? PURDUE Elmore Family School of Electrical

UNIVERSITY and Computer Engineering



The multi-armed bandit problem
is inspired by a row of slot machines

* A gambler is the agent

* The row of slot machines is the environment

* The agent can take an action by pulling a slot

>, ¢¢

machine’s “arm”

* The slot machine payout (or lack thereoft) is
the reward signal

https://medium.com/growth-book/guide-to-multi-arm-bandits-what-
is-it-and-why-you-probably-shouldnt-use-it-ecc9bb2e5a84

2

David I. Inouye, Purdue University



Interactive multi-armed bandit demo



Multi-armed bandits are a simplification of RL
yet they retain core RIL-specific 1deas

* The environment only has a single state
* “Observing” the environment state is not necessary since it’s always the same

* The environment does not change (in the vanilla bandit problem)
* The distribution of rewards does not change over time o7 due to actions
* For example, the payout probabilities for each slot machine are fixed

* At every timestep, the agent can choose any action

* The only problem is lack of knowledge

* If we knew which machine gave the highest average payout, we would just take that optimal action
again and again.

 If it was supervised learning, only one example of the “correct” action would be enough!

* The explore-exploit tradeoff still exists because of uncertainty



Multi-armed bandits are a simplification of RL
yet they retain core RIL-specific 1deas

* Bandits isolate the unique feature of RL regarding “teedback”

* Instructive feedback provides the correct action no matter which
action was already taken (e.g., supervised learning)

* The optimal action a; (equivalently, ground truth label y™) is the “feedback”
given to a superv1sed learning system regardless of the actual action a;
(equivalently, system’s prediction ¥)

* Evaluative feedback provides a reward depending on the action
actually taken

* The reward signal is a function of the action actually taken a;, i.e., R(a;).
e Thus, the environment evaluates the actual action/decision made.



How do we design a policy that maximizes the
sum of rewards?

* We could just do a completely random policy that randomly chooses an
action at every time step

A; ~ Uniform({1,2, ..., K })

* This is good because it is simple and achieves an average reward over all
choices

* It chooses good and bad actions evenly
* It completely ignores the past (i.e., ignores its experience)

* However, 1t will often take an action that gives suboptimal reward



A better approach 1s to estimate the value of
each action to determine optimal actions

* First, we will define the value of an action as the expected reward given
this action:

q.(a) == E[R;|A; = a]
* R; represents the reward random variable at time t
* A¢ represents the action random variable at time t
* a represents a specific action

* If we knew the q,, then the problem would be trivial, just repeatedly take
A, = a" =argmaxq,(a)
a
* Obviously, we do not know g, but we can approximate it given our

previous actions:
Qc(a) ~ q.(a)



A sample average can be used to estimate the
expectation

* We can estimate ¢, by using a sample average over the past actions and

rewards: | -
sum of rewards when a taken priortot ;=7 R; - 1(4; = a)

number of times a taken priortot Zf;% 1(A; = a)

Q¢(a) =

* As an example, suppose the past rewards and actions are:

A —_ [1;2;2;1;2; 212:
R = [0;1;1;1;01 1)1_

*1f t = 6, then Qs(1) = =, Q6(2) = =
* What would it be for t = 3?




Given an estimate of the action value Q(a),
how could we use this information?

* The greedy action optimizes the action value approximation Q;(a)
A = arg max Q. (a

* This 1s good because it approx1mates the optimal action
a’ = arg max q*?m)

* Thus, it will tend to have better reward than the random policy

* Greedy algorithm
* Initialize Va, Q1 (a) <0, ng< 0
. For t=1{12,..,T}

Choose At — arg max Q;(a)
* Receive reward Rt < Environment(4;)
A R
* Update Qr41(A¢) < (@t mag ) ¥Re

Ny, +1
* Update ny, «<ny, +1




Greedy can be suboptimal
if Q¢ is a a bad approximation

* However, greedy can be bad, if Q,(a) is bad approximation
max Qt(ta) + max q,(a)
a a

* Thus, the core explore-exploit tradeotf remains:
* Exploit — Choose greedy action to maximize rewards.
* Explore — Choose non-greedy action to improve estimate of

* Note: The “explore” part is just about improving our understanding about the
environment rather than finding new environment states because there is only one state
in bandits

* Can we do better than greedy?



e-Greedy algorithm slightly modifies the
oreedy algorithm to improve exploration

. C})lne simple idea 1s to randomly sample arms initially and then do greedy from
then on

* A more common approach is to randomly choose between explore (via
random algorithm) and exploit (via greedy algorithm)

* €-Greedy algorithm
e Initialize Va, Q:(a) « 0, n, « 0
* Fort ={1,2,...,T}

With probability €, choose A < RandomAction()
* Otherwise, choose A; < arg max Q;(a)

* Receive reward Ry « Enviro%ment(At)
Ag)- R
* Update Qr41(A¢) < (@t mag ) ¥Re

TlAt+1
* Update ny, «<ny, +1




Demo of bandit algorithms



Non-stationary / dynamic bandits relax the
assumption that the environment 1s only in one state

* The distribution of rewards changes over time
* Though this doesn’t necessarily mean that the actions atfect the environment

* The optimal q, is dependent on time

* In practice, the estimate gt can be u dated usmg a oradient-like rule:
Qr+1(Ap) = Qt ¢) +a[R, — é(At)

* This turns out to be a decaying weighted average (i.e., more weight on the
most recent rewards: t

Qi1 (A) = (1= @)y + ) a(l— )R,

=1



Contextual bandits relax the assumption that the agent
can observe some clue about the environment state

* Suppose now that the environment changes (nonstationary) AND that the
agent can observe some clue or contextual information about the
environment

* Examples
* Nettlix images — The demographics or previous ratings of the uset.
* Best search result — The search query and user history

* Now the best action depends on this context, or more generally some
observation of the environment state, denoted S

* This is the “input” to the action-selection algorithm (like x; for supervised learning)

* One remaining assumption is that the actions do NOT affect the next state
* Thus, there 1s still no notion of planning in contextual bandits
* This is the last remaining assumption to relax to get the full RL problem




Summary

* Multi-armed bandits are a simplification of RL
* Single environment state

* Lack of knowledge / uncertainty is the key challenge

* Bandit problems retain key unique aspects of RL including

* Evaluative feedback rather than instructive feedback (as 1n supervised learning)
* Explore-exploit tradeoff even though the environment does not change

* Bandit algorithms
* Random
* Greedy
* €-Greedy

* Variants of bandit problems
* Nonstationary bandits — Environment changes over time
* Contextual bandits — Agent observes clues/context about the environment state
* Both assume that actions do NOT affect future environment states



Reference

* Based on the excellent RLL book by Sutton and Barto
* http://incompleteideas.net/book/the-book-2nd.html

16

David 1. Inouye, Purdue University


http://incompleteideas.net/book/the-book-2nd.html

