In [1]:

In [2]:

Brief Review of Linear Algebra

Content and structure mainly from:
http://www.deeplearningbook.org/contents/linear algebra.html
(http://www.deeplearningbook.org/contents/linear algebra.html)

import numpy as np
import matplotlib.pyplot as plt

Scalars

« Single number

» Denoted as lowercase letter

» Examples
= x € R - Real number
» ye {0,1,...,C} - Finite set
= u € [0, 1] - Bounded set

x = 1.1343
print(x)
z = int(-5)
print(z)

1.1343
-5

Vectors

e Array of numbers
 In notation, we usually consider vectors to be "column vectors
« Denoted as lowercase letter (often bolded)
» Dimension is often denoted by d, D, or p.
» Access elements via subscript, e.g., x; is the i-th element
o Examples

«» x € R?

X1

X2

X =

Xd
X = [Xl,Xz, ,xd]T
2= [y/X0 /%o /5l
y € {0,1,...,C}¢ - Finite set
u € [0, 1]¢ - Bounded set


http://www.deeplearningbook.org/contents/linear_algebra.html
http://www.deeplearningbook.org/contents/linear_algebra.html

In [3]: x = np.array([1.1343, 6.2345, 35])

print(x)

z =5 % np.ones(3, dtype=int)
print(z)

[ 1.1343 6.2345 35. ]

[5 5 5]

Note: The operator + does different things on
numpy arrays vs Python lists

« For lists, Python concatenates the lists
» For numpy arrays, numpy performs an element-wise addition
« Similarly, for other binary operators suchas -, +, *,and /

In [4]: a_list = [1, 2]
b_list = [30, 40]
c_list = a_list + b_list

print(c_list)

a = np.array(a_list) # Create numpy array from Python list
b = np.array(b_list)

c=a+b

print(c)

[1, 2, 30, 40]
[31 42]

In [5]: type(a_list)

Out[5]: 1list

In [6]: type(a)

Out[6]: numpy.ndarray

Matrices

o 2D array of numbers
» Denoted as uppercase letter
» Number of samples often denoted by n or N.
* Access rows or columns via subscript or numpy notation:
= X, isthej-throw, X, ;isthe jth column
» (Sometimes) X, x; is the i-th row or column depending on context
* Access elements by double subscript X; ; or x; ; is the i, j-th entry of the matrix
+ Examples
= X € R™ - Real number
. X = l 1 2 3
4 5
= Y e{0,1,...,C}> _ Finite set

l - Real number



= U €[0,1]™ - Bounded set

In [7]: X = np.arange(12).reshape(3,4)

print(X)

W = np.array([
[1.1343 + 2.1j, 1j, 0.1 + 3.5j],
[3, 4, 5],

1)

print(w)

Z =5 % np.ones((3, 3), dtype=int)

print(2)

[l 1 2 3]

[4 5 6 7]

[ 8 9 10 11]]

[[1.1343+2.1] O. +1.j 0.1  +3.5j]
[3. +0.j 4. +0.j 5 +0.j 11
[[5 5 5]

[5 5 5]

[5 5 5]1]

Tensors

e n-D arrays
o Examples
« X € R¥™ gingle color image in PyTorch
= X € R multiple color images in PyTorch
= X € R™®3 single color image for matplotlib imshow

In [8]: from sklearn.datasets import load_sample_image
china = load_sample_image('china.jpg"')
print('Shape of image (height, width, channels):', china.shape)
ax = plt.axes(xticks=[], yticks=I[])
ax.imshow(china);

Shape of image (height, width, channels): (427, 640, 3)




In [9]:

In [10]:

In [11]:

Matrix transpose

» Changes columns to rows and rows to columns
+ Denoted as AT
» For vectors v, the transpose changes from a column vector to a row vector

T
X1 X1
X2 X2
_ T _ _
X = , X = = [x1. %0, ... 5 X4]
Xd Xd

A = np.arange(6).reshape(2,3)

print(A)
print(A.T)

[[0 1 2]
[3 4 5]]
[[0 3]

[1 4]

[2 5]]

Let's look at the transpose of a row vector (i.e., 1D array) in
numpy

v = np.arange(5)
print(v)
print(v.shape)

[0 123 4]
(5,)

What will be the output of the following? ---- Discuss

print(v.T)
print(v.T.shape)

[0 123 4]
(5,)



In [12]: # Placeholder for discussion question

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a
row or column vector per se.

In [13]: v = np.arange(5)
print('A numpy vector', v)
print('Transpose of numpy vector', v.T)
print('A matrix with one column')
print(v.shape)
print(len(v.shape))
V = v.reshape(-1, 1)
print('V shape: ', V.shape)
print(V)
np.dot(v.T, v)

A numpy vector [0 1 2 3 4]
Transpose of numpy vector [0 1 2 3 4]
A matrix with one column
(5,)
1
V shape: (5, 1)

[[0]

[1]

[2]

[3]

[4]1]

Qut[13]: 30

Matrix product

« Let A € R™", B € R™?, then the matrix product C = AB is defined as:
Cij = }S aj kb j
ke(1,2,....n}
where C € R"™? (notice how inner dimension is collapsed.
» (Show on board visually)



In [14]:

A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
C = np.zeros((A.shapel[0], B.shapel[1]))
print(C.shape)
for i in range(C.shape[0@]):

for j in range(C.shape[1]):

for k in range(A.shape[1]):
Cli, j1 += Ali, k] * BIk, jl

print(C)
print(np.matmul(A, B))
print(A @ B)

[[0 1]
[2 3]
[4 5]]

[[0 1 2]
[3 4 5]]

(3, 3)

[[ 3. 4. 5.]
[ 9. 14. 19.]
[15. 24. 33.1]

[[ 3 4 5]

[ 9 14 19]
[15 24 33]]

[[ 3 4 5]

[ 9 14 19]
[15 24 33]]

Notice triple loop, naively cubic complexity

O(n?)

However, special linear algebra algorithms can do it O(n

Takeaway - Use numpy np.matmul or @ operator for matrix

multiplication

(np.dot also works for matrix multiplication but is different in PyTorch and is less explicit so
| suggest the two methods above for matrix multiplication)

Element-wise (Hadamard) product NOT equal

to matrix multiplication

» Normal matrix mutiplication C = A B is very different from element-wise (or more
formally Hadamard) multiplication, denoted F' = A ® D, which in numpy is just the star

*



In [15]:

In [16]:

A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
try:
A x B # Fails since matrix shapes don't match and cannot broadcasi
except ValueError as e:
print('Operation failed! Message below:')
print(e)

[[0 1]
[2 3]
[4 5]]
[[0 1 2]
[3 4 5]]
Operation failed! Message below:
operands could not be broadcast together with shapes (3,2) (2,3)

print(A)

D = 10%B.T

print(D)

F=AxxD # Element-wise / Hadamard product
print(F)

print(2x*F)

[[0 1]
[2 3]
[4 5]]

[[ 0 30]
[10 40]
[20 50]]

[[ o 30]
[ 20 120]
[ 80 250]]

[[ 0 60]
[ 40 240]
[160 500]]

Properties of matrix product

« Distributive: A(B+ C) = AB+ AC

 Associative: A(BC) = (AB)C

o NOT commutative, i.e., AB = BA does NOT always hold

» Transpose of multiplication (switch order and transpose of both):
(AB)T = BT AT



In [17]:

In [18]:

Out[18]:

print('AB")
print(np.matmul(A, B))
print('BA")
print(np.matmul(B, A))
print('(AB)~T")
print((A @ B).T)
print('B~T A”T')
print(np.dot(B.T, A.T))

AB
[[ 3 4 5]
[ 9 14 19]
[15 24 33]]

BA

[[10 13]

[28 4011
(AB)~T

[[ 3 9 15]
[ 4 14 24]
[ 519 33]]

BAT AT

[[ 3 9 15]
[ 4 14 24]
[ 519 33]1]

Properties of inner product or vector-vector
product

» Inner product or vector-vector multiplication produces scalar:
T T AT T
Xy=xy =yx
Also denoted as:
T
(x,y)=x'y
Can be executed via np.dot or np.matmul

# Inner product

a = np.arange(3)

print(a)

b = np.array([11, 22, 33])
print(b)

np.dot(a, b)

[0 1 2]
[11 22 33]

88

Identity matrix keeps vectors unchanged

» Multiplying by the identity does not change vector (generalizing the concept of the scalar
1)
« Formally, I, € R™" andVx € R", I,x = x



In [19]:

In [20]:

» Structure is ones on the diagonal, zero everywhere else:
» np.eye function to create identity

I3 = np.eye(3)
print(I3)

X = np.random.randn(3)
print(x)
print(np.matmul(I3, x))

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.1]
[-1.20881701 ©0.2394832 0.0902765 ]
[-1.20881701 ©0.2394832 0.0902765 ]

Matrix inverse times the original matrix is the
identity

« The inverse of square matrix A € m X m is denoted as A~! and defined as:

A'A=1
« The "right" inverse is similar and is equal to the left inverse:
AAT =1

onameMmemonmmxmd%
» Does NOT always exist, similar to how the inverse of x only exists if x # 0

A = 100 * np.array([[1, 0.5], [0.2, 1]])
print(A)

Ainv = np.linalg.inv(A)

print(Ainv)

print('A~{-1} A = ")
print(np.matmul(Ainv, A))

print('A A~{-1} = ')

print(np.matmul(A, Ainv))

[[100. 50.]
[ 20. 100.]]

[[ 0.01111111 -0.00555556]
[-0.00222222 0.01111111]]

AN-1} A =

[[1.00000000e+00 0.00000000e+00]
[2.77555756e-17 1.00000000e+00] ]

A A~{-1} =

[[1.00000000e+00 0.00000000e+00]
[2.77555756e-17 1.00000000e+00] ]

Singular matrices are similar to zeros

» Informally, singular matrices are matrices that do not have an inverse (similar to the idea
that 0 does not have an inverse)
» Consider the 1D equation ax = b



= Usually we can solve for x by multiplying both sides by 1/a
» But whatifa = 0?
= What are the solutions to the equation?
» Called "singular" because a random matrix is unlikely to be singular just like choosing a
random number is unlikely to be 0.

In [21]: from numpy.linalg import LinAlgError
def try_inv(A):
print('A = ')
print(np.array(A))
try:
np.linalg.inv(A)
except LinAlgError as e:
print(e)
else:
print('Not singular!"')
print()

#try_inv([[0, 0], [0, 0]])
#try_inv(np.eye(3))
#try_inv([[1, 1], [1, 1]])
#try_inv([[1, 10], [1, 10]])
#try_inv([[2, 20], [4, 40]])
try_inv([[2, 201, [40, 41])

A:
[[ 2 20]
[40 4]]
Not singular!



In [22]: # Random matrix is very unlikely to be 0
for j in range(10):
try_inv(np.random.randn(2, 2))

A =
[[ 1.26118971 -1.43403752]
[ 1.61438292 -0.13347242]]
Not singular!

A =
[[-0.24836346 0.0274398 ]
[-0.73244546 -0.71594711]]
Not singular!

A =
[[ 2.19017126 1.26444847]
[-1.18678428 0.58205057]]
Not singular!

A =
[[-0.45569785 -0.03778359]
[ 1.48976852 -0.89876901]]
Not singular!

A =
[[0.57163603 0.43976888]

[0.33569978 0.985705711]]
Not singular!

A =
[[ 0.08157292 -1.07885604]
[ 0.80951891 -0.05069529]]
Not singular!

A =
[[-1.21019806 0.80413737]
[ 0.34641766 -0.275474111]]
Not singular!

A =
[[ 0.81170344 -0.68817044]
[-0.17291701 2.55286599]]
Not singular!

A =
[[-1.40268673 -0.64529595]
[-0.40521662 -0.94166741]]
Not singular!

A =
[[ 1.93407518 1.76608736]

[-1.27381615 -0.67141917]]
Not singular!



Norms: The "size" of a vector or matrix

« Informally, a generalization of the absolute value of a scalar
» Formally, a norm is an function f that has the following three properties:
» f(x) =0 = x = 0 (zero point)
» f(x+Yy) < f(x)+ f(y) (Triangle inequality)
» Ya € R, f(ax) = |a| f(X) (absolutely homogenous)
o Examples
= Absolute value of scalars
= p-norm (also denoted £ ,-norm)

d 7
Ixll, = (D Ixil?
i=1

= (Discussion) What does this represent when p = 2 (for simplicity you can assume
d=2)?
o When p = 2, we often merely denote as ||x||.
» What about when p = 1?
= What about when p = oo (or more formally the limit as p — ©0)?

In [23]: x = np.array([1, 1])
print(np.linalg.norm(x, ord=2))
print(np.linalg.norm(x, ord=1))
print(np.linalg.norm(x, ord=np.inf))

1.4142135623730951
2.0
1.0



In [24]:

In [25]:

Vectors that have the same norm form a "ball" that isn't
necessarily circular

rng = np.random.RandomState(0)
X = rng.randn(1000, 2)

p_vals = [1, 1.5, 2, 4, np.inf]

fig, axes = plt.subplots(1l, len(p_vals), figsize=(len(p_vals)*4, 3))

for p, ax in zip(p_vals, axes):
# Normalize them to have the unit norm
Z = (X.T / np.linalg.norm(X, ord=p, axis=1)).T
ax.scatter(z[:, 01, zI[:, 11)
ax.axis('equal')
ax.set_title('Unit Norm Ball for $p$=%g' % p)

Unit Norm Ball for p=1 Unit Norm Ball for p=1.5 Unit Norm Ball for p=2 Unit Norm Ball for p=4 Unit Norm Ball for p=inf

05 05 05 05 05

00 0.0 0.0 00 00

05 05 -05 -05 05

-1.0 =10 -1.0 -1.0 -1.0

-10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10

Squared L, norm is quite common since it simplifies to
a simple summation

1\2
d 2 d d
2 2
I3 =|{ Xl ) | =2l =2 %

- Additionally, this can be computed as ||x]|3 = x”

» Informally, this is analogous to taking the square of a scalar number

X

X = np.arange(4)
print(np.linalg.norm(x, ord=2)x*2)
print(np.dot(x, x))

14.0
14

Orthogonal vectors

« Orthogonal vectors are vectors such that x’ y = 0
« The dot product between vectors can be written in terms of norms and the cosine of the
angle:
X'y = [Ix[l2]lyll2 cos 6
« (Discussion) Suppose X and y are non-zero vectors, what must 6 be if the vectors are
orthogonal?



In [26]:

print(np.matmul([0, 11, [1, 01))

theta = np.pi/2

x = np.array([np.cos(theta), -np.sin(theta)])
y = np.array([np.sin(theta), np.cos(theta)l)
print(x)

print(y)

print(np.dot(x, y))

0

[ 6.123234e-17 -1.000000e+00]
[1.000000e+00 6.123234e-17]
0.0

Special matrices: Orthogonal matrices

« Informally, an orthogonal matrix only rotates (or reflects) vectors around the origin (zero
point), but does not change the size of the vectors.
« Informally, almost analagous to a 1 or -1 for matrices but more general
« A square matrix such that 070 = Q0" =1
« Or, equivalently Q7! = QT
» Or, equivalently:
= Every column (or row) is orthogonal to every other column (or row)
= Every column (or row) has unit £,-norm, i.e., ||Q;.|[> = [|Q.ll» =1



In [27]:

print('Identity matrix"')

Q = np.eye(2) # Identity

print(Q)

print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))

print('Reflection matrix"')

Q = np.array([[1, 0], [0, -1]]) # Reflection
print(Q)

print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))

print('Rotation matrix")

theta = np.pi/3

Q = np.array([
[np.cos(theta), -np.sin(theta)l,
[np.sin(theta), np.cos(theta)l

1)

print(Q)

print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))

Identity matrix
[[1. 0.]
[0. 1.]]
True
Reflection matrix
[[ 1 o]
[ 0 -1]1]
True
Rotation matrix
[[ 0.5 -0.8660254]
[ 0.8660254 0.5 11
True

Other special matrices: Symmetric, Triangular,
Diagonal
« Symmetric matrices are symmetric around the diagonal; formally, A = AT

» Triangular matrices only have non-zeros in the upper or lower triangular part of the matrix
« Diagonal matrices only have non-zeros along the diagonal of a matrix



In [28]: A = np.arange(25).reshape(5, 5)+1
print('Symmetric')
print(A + A.T)
print('Upper triangular')
print(np.triu(A))
print('Lower triangular')
print(np.tril(A))
print('Diagonal (both upper and lower triangular)')
print(np.diag(np.arange(5) + 1))

Symmetric
[[ 2 8 14 20 26]
[ 8 14 20 26 32]
[14 20 26 32 38]
[20 26 32 38 44]
[26 32 38 44 50]]
Upper triangular
[[1 2 3 4 5]
8 9 10]
13 14 15]
0 19 20]
0 0 25]1]
riangular
0 0 0]
[ 6 0 0 0]
[11 12 13 o 0]
[16 17 18 19 0]
[21 22 23 24 25]]
Diagonal (both upper and lower triangular)
[[1 000 0]

r

[l OIS ISR SRS

[
[
[
[
Low
[[

N+ oo

Multiplying a matrix by a diagonal matrix scales the
columns or rows

» Right multiplication scales columns
o Left multiplication scales rows



In [29]: A = np.arange(16).reshape(4, 4)
print(A)
D = np.diag(10xx(np.arange(4)))
diag_vec = np.diag(D)
print(D)
print('AD")
print(np.matmul(A, D))
print('AD (via numpy * and broadcasting)')
print(A * diag_vec)
print('DA")
print(np.matmul(D, A))
print('DA (via numpy * and broadcasting)')
print(A * diag_vec.reshape(-1, 1))

[lo 1 2 3]
[4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
(L 1 0 0 0]
[ o 10 0 0]
[ o 0 100 0]
[ © 0 0 1000]]
AD
[[ 0 10 200 3000]
[ 4 50 600 7000]
[ 8 90 1000 11000]
[ 12 130 1400 15000]]
AD (via numpy x and broadcasting)
[[ 0 10 200 3000]
[ 4 50 600 7000]
[ 8 90 1000 11000]
[ 12 130 1400 15000]]
DA
[[ 0 1 2 3]
[

40 50 60 70]

[ 800 900 1000 1100]

[12000 13000 14000 150001]]
DA (via numpy * and broadcasting)
[[ 0 1 2 3]

[ 40 50 60 701

[ 800 900 1000 1100]

[12000 13000 14000 15000]]

Programming Topic: NumPy Broadcasting!

See demo on broadcasting for NumPy (same for PyTorch and similar libraries).



In [ ]:

In [30]:

Inverse of diagonal matrix is formed merely by taking
inverse of diagonal elements

» Most operations on diagonal matrices are just the scalar versions of their entries

A = np.diag(np.arange(5)+1)
print(A)

diag_A = np.diag(A)
print('diag_A', diag_A)
diag_A_inv = 1 / diag_A
print('diag_A_inv', diag_A_inv)
Ainv = np.diag(diag_A_inv)
print(Ainv)

Ainv_full = np.linalg.inv(A)
print(Ainv_full)

[[1 000 0]
[0 2 00 0]
[0 0 30 0]
[0 0 0 4 0]
[0 0 0 0 5]]
diag_A [1 2 3 4 5]
diag_A_inv [1. 0.5 0.33333333 0.25 0.2 ]
[[1. Q. Q. Q. 0. ]
[0. 0.5 Q. Q. Q. ]
[0. Q. 0.33333333 0. Q. ]
[0. Q. Q. 0.25 Q. ]
[0. Q. Q. Q. 0.2 11
([ 1. Q. Q. Q. Q. ]
[ 0. 0.5 Q. Q. Q. ]
[ 0. Q. 0.33333333 0. Q. ]
[-0. -0. -0. 0.25 -0. ]
[ 0. Q. Q. Q. 0.2 11

Motivation: Matrix decompositions allow us to
understand and manipulate matrices both
theoretically and practically

« Analagous to prime factorization of an integer, e.g., 12 =2 X2 X 3
= Allows us to determine whether things are divisible by other integers



» Analagous to representing a signal in the time versus frequency domain
= Both domains represent the same object but are useful for different computations
and derivations

Eigendecomposition

« For real symmetric matrices, the eigendecomposition is:
A =QAQ"
where Q is an orthogonal matrix and A is a diagonal matrix.
« Often in notation, it is assumed that the diagonal of A, denoted A is ordered by
decreasing values, i.e., A1 > Ay, > -+ > A4.
» A are known as the eigenvalues and Q is known as the eigenvector matrix

In [31]: rng = np.random.RandomState(0)
B = rng.randn(4,4)
A =B + B.T # Make symmetric

lam, Q = np.linalg.eig(A)

print(np.diag(lam))

print(Q)

A_reconstructed = np.matmul(np.matmul(Q, np.diag(lam)), Q.T)
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A_reconstructed) else 'No')

[[ 6.54930093 0. 0. 0. ]
0. -3.728219 0. 0. ]
0 0. 0.45077461 0. ]
0. 0. 0. -0.7428718 ]]
0.77115168 0.36010163 ©0.51908231 -0.07877468]
0.25392564 -0.75129904 0.0518548 -0.60694531]

0.31251286 ©0.37021589 -0.78092889 -0.394241 ]
[ 0.49313545 -0.41087317 -0.34353267 0.68555523]]
Are all entries equal up to machine precision?
Yes

— e, ., —

Simple properties based on eigendecomposition

« A7l is easy to compute
» Easy to solve equation AX = b
« Powers of matrix is easy to compute A> = AAA.
« The matrix is singular if and only if there is a zero in 4

Singular value decomposition of any matrix
(The decomposition to end all
decompositions)

« For any matrix A € R™" (even non-square), the singular value decomposition is:
A=UzV"



In [32]:

where U € R™ and V' € R"™" are orthogonal matrices and = € R™*" is a diagonal
(though not necessarily square) matrix.

« Often in notation, it is assumed that the diagonal of X, denoted o is ordered by
decreasing values, i.e., 61 = 67,2 -+ = 0.

« ¢ are known as the singular values and U and V' are known as the left singular
vectors and the right singular vectors respectively.

rng = np.random.RandomState(0)
A = np.arange(6).reshape(2, 3)
print('A', A.shape)

print(A)

# Note returns V°T (i.e. transpose) rather than V
U, s, Vt = np.linalg.svd(A, full_matrices=True)

# Convert singular vector to matrix
Sigma = np.zeros_like(A, dtype=float)
Sigmal[:2, :2] = np.diag(s)

print('U', U.shape)
print('Sigma', Sigma.shape)
print('Vt', Vt.shape)

A_reconstructed = np.matmul(U, np.matmul(Sigma, Vt))
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A_reconstructed) else 'No')

A (2, 3)

[[0 1 2]
[3 4 5]]

u (2, 2)

Sigma (2, 3)

vt (3, 3)

Are all entries equal up to machine precision?
Yes

Rank rank(A) is the number of linearly independent

columns
» Consider an example of two equations with two unknowns (Is there a unique solution?):
= 2x4+3y=0
= 4x+6y=1

3
Similar to a matrix A = [4 6] , hotice "redundancy"

SVD -> Rank = Number of non-zero singular values
If A € R Ais not singular if and only if rank(A) = d.
Simplest case is rank 1 matrix: XyT (show on board)
= Notice difference from inner product, denoted as XTy
. xyT is also known as the outer product of two vectors



In [33]:

SVD provides powerful interpretation of matrix as sum
of rank one matrices

rank(A)
A= UEVT = Z UiuiV’iT
i=1

« SVD can be used to solve the following matrix approximation problem:
mgn |A— B||p s.t. rank(B)<r

where || A|| ¢ is the Frobenius norm, or just like the £, -norm but consider the matrix as a

long vector.
[ a b l
c d

= Example:
from sklearn.datasets import load_sample_image
china = load_sample_image('china.jpg")
gray_china = chinal:,:,0]1/255.0
print('china matrix', gray_china.shape)
#print(gray_china)

IAllF = = |lla, b, ¢, dlll>

F

U, s, Vt = np.linalg.svd(gray_china)
Sigma = np.zeros_like(gray_china, dtype=float)
Sigmal[:427, :427]1 = np.diag(s)

china matrix (427, 640)



In [34]:

max_rank = np.min(gray_china.shape)
rank_arr [0,1, 2, 4, 8, 16, 32, 64, max_rank]
fig, axes = plt.subplots(3, 3, figsize=(len(rank_arr)x2, 3x4))
for r, ax in zip(rank_arr, axes.ravel()):
china_approx = np.matmul(U[:, :r], np.matmul(Sigmal:r,:r]l, Vt[:r,
compression = r/max_rank
ax.imshow(china_approx, cmap='gray')
ax.set_title('Rank=%d, Compression=%.1f%%' % (r, compressionx100))

Rank=0, Compression=0.0% Rank=1, Compression=0.2% Rank=2, Compression=0.5%

100
150
200
250
300
350
400

200 300 400 500

200 300 400 500
Rank=4, Compression=0.9% Rank=8, Compression=1.9% Rank=16, Compression=3.7%

100 200 300 400 500

o 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 00
Rank=64, Compression=15.0% Rank=427, Compression=100.0%

Rank=32, Compression=7.5%




Let's look at the difference between the approximation and the
original

In [35]: max_rank
rank_arr

np.min(gray_china.shape)
[0,1, 2, 4, 8, 16, 32, 64, max_rank]

fig, axes = plt.subplots(3, 3, figsize=(len(rank_arr)*2, 3x%4))
for r, ax in zip(rank_arr, axes.ravel()):

0

0

china_diff = np.matmul(U[:, :r]l, np.matmul(Sigmal:r,:rl, Vtl:r, :]
compression = r/max_rank
ax.imshow(china_diff, cmap='gray', vmin=-1, vmax=1)

ax.set_title('Difference, Rank=%d, Compression=%.1f%%' % (r, compre

Difference, Rank=0, Compression=0.0% o Difference, Rank=1, Compression=0.2% o Difference, Rank=2, Compression=0 5%

100 200 300 400 500 600 ] 100 200 300 400 500 600 [} 100 200 300 400 500 600
Difference, Rank=4, Compression=0.9% Difference. Rank=8, Compression=1.9% Difference, Rank=16, Compression=3.7%

100 200 300 400 500 600 a 100 200 00 400 500 500
Difference, Rank=64, Compression=15.0%

100 200 300 400 500 600

Difference, Rank=32, Compression=7.5% o Difference, Rank=427, Compression=100.0%




Usually the most important information is in the first
few singular values

In [36]: # The most important components are
plt.plot(s,'.")

Out[36]: [<matplotlib.lines.Line2D at 0x7fae9161dd90>]

300 1

250 1

200 1

150

100

o 100 200 300 400

Trace Tr(A) operation

« Trace is just the sum of the diagonal elements of a matrix
d

Te(A) = ) i,
i=1

« Most useful property is rotational equivalence:

Tr(ABC) = Tr(CAB) = Tr(BCA)
 In particular, (even if different dimensions)

Tr(AB) = Tr(BA)

« Also, trace operator is linear so we have the following properties:

Tr(aA + fB) = aTr(A) + fTr(B)



In [37]:

A = np.arange(2%*3).reshape(2,3)
B = A.copy().T
print('AB")

print(np.matmul(A, B))
print('Tr(AB)"')
print(np.trace(np.matmul(A, B)))
print('Tr(BA)"')
print(np.trace(np.matmul(B, A)))
print('Tr(A~T B~T) ")
print(np.trace(np.matmul(A.T, B.T)))
print('Tr(B~T A"T) ")
print(np.trace(np.matmul(B.T, A.T)))

AB

[[ 5 14]
[14 50]]

Tr(AB)

55

Tr(BA)

55

Tr(A~T B"T)

55

Tr(B~T A™T)

55



