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Why 
probability? 
Probability 
is useful for 
handling 
uncertainty

▸Inherent stochasticity

▸Quantum mechanics

▸Card games

▸Incomplete observability

▸“Let’s Make a Deal” game show of three 
doors (called “Monty Hall” problem)

▸Incomplete modeling

▸Discretization of space for object 
locations
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Why probability?
Sometimes more practical than deterministic

▸“Most birds fly”

▸“Birds fly, except for very young birds that have 
not yet learned to fly, sick or injured birds that 
have lost the ability to fly, flightless species of 
birds including the cassowary, ostrich and kiwi…”

▸(Example from Deep Learning, Goodfellow et al., 2016, Ch. 3)
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Why probability?
An extension of formal logic rules

▸Original AI systems based on formal logic and reasoning
▸Chess
▸TurboTax

▸Many AI applications based on deterministic logic were 
too brittle and failed often

▸Traditional linguistic approaches to natural language 
processing

▸Modern AI systems almost always rooted in probability
▸Computer vision
▸Speech recognition
▸Natural language processing
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How are these statements similar or different?

▸A boardgame player: “The probability of getting 
a heads when flipping a fair coin is 50%.”

▸The weather forecaster: “The probability of rain 
tomorrow is 50%.”

▸Your doctor after examining your symptoms: 
“The probability of you having the flu is 50%.”
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Frequentist and Bayesian interpretations lead to 
the same set of axioms

▸Frequentist
▸Related to rates that events occur under repeated 

experimentation

▸Bayesian interpretation
▸“Degree of belief”

▸Pragmatic interpretation
▸They lead to the same math and are useful in similar 

circumstances
▸Use whichever interpretation is most useful
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A random variable maps outcomes/events of a 
random/uncertain process to numbers

▸Flipping a coin
▸Outcomes: {“Heads”, “Tails”}
▸Possible random variable: “Heads”-> 0, “Tails”-> 1

▸Flipping two coins
▸Outcomes: {(H,H), (H,T), (T, H), (T, T)}
▸Possible random variables: # heads, # tails, same, 

different 

▸Flipping coins until you get one tails
▸Outcomes: ?
▸Random variables: ?
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A random variable maps outcomes to numbers:
Defining a random variable is the first step

▸Random Tweet
▸Outcomes: ?
▸Random variables: ?

▸Random Instagram image
▸Outcomes: ?
▸Random variables: ?
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Random variables can be discrete or continuous

▸Discrete
▸Values are in some finite set or countably infinite set
▸ −1, 1 , 5, 10, −20, 3 , 0, 1, 2, … , ℤ, 

▸Continuous
▸Values associated with intervals of ℝ
▸ 0,1 , −1, 1 , 0.5, 1 ∪ −1, 0.5 , ℝ+ ≡ [0, ∞)

▸Note: Random variables by themselves do not 
provide any probability information.
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An event is a set of possible outcomes

▸For discrete RV such as X ∈ 0,1,2, … , then 
events could be:

▸𝐸 = 0,5,1
▸𝐸 = 0,2,4,6, …   (i.e., all even numbers)

▸For continuous random variables 𝑋 ∈ ℝ, events 
are sets of the real numbers:

▸𝐸 = 0,0.5
▸𝐸 = 4,5 ∪ 8,9
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Probability distributions attach probabilities to all 
possible events of a random variable

▸Probability mass function (PMF) is used for 
discrete random variables

▸A PMF 𝑃 for random variable 𝑋 that satisfies the 
following:

1. Domain of 𝑃 must include all possible states of 𝑋
2. Unit domain: ∀ 𝑥 ∈ 𝑋, 0 ≤ 𝑃 𝑥 ≤ 1
3. Sum to 1: σ𝑥∈𝑋 𝑃 𝑥 = 1
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Probability distributions attach probabilities to all 
possible events of a random variable

▸Probability density function (PDF) is used for 
continuous random variables

▸A PDF 𝑝 for random variable 𝑋 that satisfies the 
following:

1. Domain of 𝑝 must include all possible states of 𝑋
2. Non-negative: ∀ 𝑥 ∈ 𝑋, 𝑝 𝑥 ≥ 0  ** 𝑝(𝑥) could be 

greater than 1

3. Integrate to 1: ׬
𝑥∈𝑋

𝑝 𝑥 = 1

▸𝑝(𝑥) is NOT a probability, rather integrating the 
PDF gives probabilities over sets
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Suppose 𝑋 ∈ (0, 1)       (note: 0 is not included)
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▸Are the following functions valid PDFs? Why?

▸∀𝑥 ∈ 0, 0.5 , 𝑝 𝑥 = 2; ∀𝑥 ∉ 0, 0.5 , 𝑝 𝑥 = 0

▸𝑝 𝑥 = 3𝑥2

▸𝑝 𝑥 = − log 𝑥



Integrate PDF to get probabilities that random 
variable lies within a set (usually a range)

▸The probability that 𝑋 is less than 𝑞

Pr 𝑋 ≤ 𝑞 = න
−∞

𝑞

𝑝 𝑥 𝑑𝑥

▸The probability that 𝑋 lies between 𝑎 and 𝑏

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑝 𝑥 𝑑𝑥

▸The probability that 𝑋 lies between (𝑎 and 𝑏) or 
between (𝑐 and 𝑑)

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 OR 𝑐 ≤ 𝑋 ≤ 𝑑

= න
𝑎

𝑏

𝑝 𝑥 𝑑𝑥 + න
𝑐

𝑑

𝑝 𝑥 𝑑𝑥
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Cumulative distribution function (CDF) is the integral of 
the PDF from the left up to query point 𝑞

▸The CDF is the probability that 𝑋 is less than 𝑞

𝐹 𝑞 ≡ Pr 𝑋 ≤ 𝑞 = න
−∞

𝑞

𝑝 𝑥 𝑑𝑥

▸What does 𝐹 ∞  equal?

▸The probability between 𝑎 and 𝑏 can be written as:
Pr 𝑎 < 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹 𝑎

▸The PDF is the derivative of CDF:

𝑝 𝑥 =
𝑑𝐹 𝑥

𝑑𝑥
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Examples of PMF/PDF and corresponding CDF

Continuous PDF/CDF
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Discrete PMF/CDF



Notation: Tilde used to specify distribution of 
random variable ($\sim$ in LaTeX) 

▸𝑋 ∼ 𝒩 𝜇 = 0, 𝜎 = 1
▸“Random variable 𝑋 is distributed as a normal 

distribution with mean of zero and standard deviation 
of 1.”

▸𝑋 ∼ Uniform 𝛼, 𝛽
▸“Random variable 𝑋 is distributed as a uniform 

distribution with parameters 𝛼 and 𝛽 (parameters 
may be unknown).”

▸𝑋 ∼ 𝑃 𝑥  or 𝑋 ∼ ℙ 𝑥
▸“Random variable 𝑋 is distributed as the distribution 

represented by PMF/PDF 𝑃 𝑥  or ℙ 𝑥 .”
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Joint distribution of multiple variables

▸Joint PDF/PMF is a function of two or more random 
variables (or a random vector)

▸Joint PDF/PMF can be written as:
𝑝 𝑥, 𝑦 , 𝑝 𝑥1, 𝑥2 , 𝑝 𝒙

▸If 𝑋 ∈ −1, 1  and 𝑌 ∈ −1,1  is the following a valid 
PDF?

𝑝 𝑥, 𝑦 = 𝑥𝑦

▸If 𝑋 ∈ 0, 1  and 𝑌 ∈ 0,1  is the following a valid PDF? 
𝑝 𝑥, 𝑦 = 4𝑥𝑦
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Marginal distribution is sum/integral 
over other variables

▸Example: Height and weight, “What is the distribution of height 
regardless of weight?”

▸Given joint distribution 𝑃(𝑥, 𝑦) the marginal is:

𝑃 𝑥 = ෍

𝑦∈𝒴

𝑃 𝑥, 𝑦  and 𝑃 𝑦 = ෍

𝑥∈𝒳

𝑃 𝑥, 𝑦

▸Given joint distribution 𝑃(𝑥, 𝑦) the marginal is:

𝑝 𝑥 = න
𝑦∈𝒴

𝑝 𝑥, 𝑦 𝑑𝑦  and 𝑝 𝑦 = න
𝑥∈𝒳

𝑝 𝑥, 𝑦 𝑑𝑥

▸Example: 𝑃 𝑥, 𝑦 =
𝑦 = 1 0.1 0.4
𝑦 = 0 0.3 0.2

𝑥 = 0 𝑥 = 1
▸Example: 𝑝 𝑥, 𝑦 = 4𝑥𝑦 
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Conditional distribution is the distribution
given some other event

▸What is the distribution of weight given that a 
person is 𝑥 inches tall?

▸Conditional density is the joint PDF/PMF 
renormalized by marginal density of event:

𝑝 𝑦 𝑥 ≡
𝑝 𝑥, 𝑦

𝑝 𝑥

▸Example: 𝑃 𝑥, 𝑦 =
𝑦 = 1 0.1 0.4
𝑦 = 0 0.3 0.2

𝑥 = 0 𝑥 = 1
▸Example: 𝑝 𝑥, 𝑦 = 4𝑥𝑦
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Note: Conditional and marginal distributions 
exist for any set of variables

▸Suppose 𝑝 𝒙 = 𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑝 𝑥1, 𝑥3 = න
𝑥2,𝑥4

𝑝 𝒙 𝑑𝑥2𝑑𝑥4

𝑝 𝑥1, 𝑥2 𝑥3 =
𝑝 𝑥1, 𝑥2, 𝑥3

𝑝 𝑥3

=
𝑥4׬

𝑝 𝒙 𝑑𝑥4

𝑥1,𝑥2,𝑥4׬
𝑝 𝒙 𝑑𝑥1𝑑𝑥2𝑑𝑥4
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Chain rule (or product rule) of probability

▸The joint distribution can be written as product 
of conditional PDFs/PMFs:

𝑝 𝑥1, 𝑥2 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1
𝑝 𝑥1, 𝑥2, 𝑥3 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥1, 𝑥2

▸This can be written as:

𝑝 𝑥1, 𝑥2, … , 𝑥𝑑 = ෑ

𝑖=1

𝑑

𝑝 𝑥𝑖 𝑥1, … , 𝑥𝑖−1

▸Consequence (order doesn’t matter):
𝑝 𝑥 𝑝 𝑦 𝑥 = 𝑝 𝑦 𝑝 𝑥 𝑦
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Bayes rule: Enables conversion between one 
conditional and the other (they are different)

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝 𝑥

𝑝 𝑦

(derive on board)

When are 𝑝 𝑥 𝑦  and 𝑝 𝑦 𝑥  equal?
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Independence means that one variable is not 
affected by the other variable

▸Example: Flip two coins, 𝑋 and 𝑌 are 0 or 1.
▸Counterexample: Roll dice for number 𝑋; then flip 
that number of coins and count the number of 
heads 𝑌.

▸Formally, PDF/PMF can be written as product of 
functions that only involve 𝑥 or 𝑦 (but not both)

𝑝 𝑥, 𝑦 = 𝑓 𝑥 𝑔 𝑦
▸Usually, these are the marginal densities:

𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦
▸Equivalent definition:

𝑝 𝑥 𝑦 = 𝑝 𝑥  and 𝑝 𝑦 𝑥 = 𝑝 𝑦
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An expectation (or expected value) of a function of a 
random variable is the average or mean value with 
respect to its distribution

▸Formal definitions

𝔼𝑋∼𝑃 𝑥 𝑓 𝑥 ≡ ෍

𝑥∈𝑋

𝑓 𝑥 𝑃 𝑥

𝔼𝑋∼𝑝 𝑥 𝑓 𝑥 ≡ න
𝑥∈𝑋

𝑓 𝑥 𝑝 𝑥 𝑑𝑥

▸Sometimes drop notation to 𝔼𝑋 𝑓 𝑥  or just 
𝔼 𝑓 𝑥  if clear from context

▸Common: Mean of the distribution 𝜇 = 𝔼 𝑥
▸Examples: 𝑃 𝑥 = 0.4,0.3,0.1,0.3 , 𝑝 𝑥 = 3𝑥2
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Expectation is a linear operator
(i.e. splits on summation and scale can come out)

▸A linear operator 𝐻 must satisfy two properties:
𝐻 𝑥 + 𝑦 = 𝐻 𝑥 + 𝐻 𝑦

𝐻 𝛼𝑥 = 𝛼𝐻 𝑥

▸Exercise: Derive for expectations, i.e. 𝐻 = 𝔼
𝔼 𝑎𝑓 𝑥 + 𝑏𝑔 𝑥 = 𝑎𝔼 𝑓 𝑥 + 𝑏𝔼 𝑔 𝑥
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Variance measures the “spread” of a distribution

▸Definition
Var 𝑥 = 𝜎2 ≡ 𝔼𝑋 𝑥 − 𝜇 2

= 𝔼𝑋 𝑥 − 𝔼𝑋 𝑥 2

▸Intuitively, recenter and then measure expected 
value of 𝑓 𝑥 =  𝑥2

▸Standard deviation is square root of variance

𝜎 = 𝜎2 = 𝔼𝑋 𝑥 − 𝜇 2
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Covariance and correlation measure
linear relationship between two variables

▸Covariance definition
Cov 𝑥, 𝑦 ≡ 𝜎𝑋,𝑌

2 ≡ 𝔼𝑋,𝑌 𝑥 − 𝜇𝑋 𝑦 − 𝜇𝑦

▸Correlation is a normalized covariance

𝜌𝑋,𝑌 ≡
𝜎𝑋,𝑌

2

𝜎𝑋𝜎𝑌

▸Example: 𝑃 𝑥, 𝑦 =
𝑦 = 1 0.4 0.1
𝑦 = 0 0.1 0.4

𝑥 = 0 𝑥 = 1
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Covariance and correlation example derivation

▸Example: 𝑃 𝑥, 𝑦 =
𝑦 = 1 0.4 0.1
𝑦 = 0 0.1 0.4

 𝑥 = 0 𝑥 = 1

▸Means and variances: 𝜇𝑋 = 𝜇𝑌 = 0.5, 𝜎𝑋
2 = 𝜎𝑌

2 = 0.25

▸𝜎𝑋,𝑌
2 = 𝔼𝑋,𝑌 𝑥 − 𝜇𝑋 𝑦 − 𝜇𝑦

▸= 𝑝 0,0 0 − 0.5 0 − 0.5 + 𝑝 0,1 0 − 0.5 1 − 0.5 + 𝑝 1,0 1 − 0.5 (
)

0 −
0.5 + 𝑝 1,1 1 − 0.5 1 − 0.5

▸= 0.1 −0.5 −0.5 + 0.4 −0.5 0.5 + 0.4 0.5 −0.5 + 0.1 0.5 0.5

▸= 0.1 0.25 + 0.4 −0.25 + 0.4 −0.25 + 0.1 0.25

▸= 0.2 0.25 + 0.8 −0.25

▸=
1

5

1

4
+

4

5
−

1

4

▸= −
3

20
= −0.15

▸𝜌𝑋,𝑌 =
𝜎𝑋,𝑌

2

𝜎𝑋𝜎𝑌 
=

−
3

20

0.25 0.25
=

−
3

20
1

4

= −
3

5
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Uncorrelated (𝜌𝑋,𝑌 = 0) is NOT the same as 
independence (because only measures linear 
relationship)
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Covariance and correlation matrix 
are generalizations for vectors

▸Covariance matrix has covariance of every pair of 
random variables

Σ =

𝜎𝑋1,𝑋1

2 ⋯ 𝜎𝑋1,𝑋𝑑

2

⋮ ⋱ ⋮
𝜎𝑋𝑑,𝑋1

2 ⋯ 𝜎𝑋𝑑,𝑋𝑑

2

▸Matrix has variance along diagonal 𝜎𝑋𝑖,𝑋𝑖

2 = 𝜎𝑋𝑖

2

▸Correlation matrix is similar but with 1s on diagonal

R =

1 ⋯ 𝜌𝑋1,𝑋𝑑

⋮ ⋱ ⋮
𝜌𝑋𝑑,𝑋1

⋯ 1
▸Both matrices are symmetric Σ = Σ𝑇and 𝑅 = 𝑅𝑇
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The empirical expectation is a sample version of 
the population-level expectation

▸Empirical expectation is the average over i.i.d. 
samples from the distribution

෡𝔼𝑛 𝑓 𝑥 =
1

𝑛
෍

𝑖=1

𝑛

𝑓 𝑥𝑖

▸where 𝑥1, 𝑥2 … , 𝑥𝑛 are i.i.d. samples from the true 
distribution 𝑝 𝑥

▸Law of large numbers ensures this approaches 
the population expectation as the number of 
samples grows

lim
𝑛→∞

 ෡𝔼𝑛 𝑓 𝑥 → 𝔼𝑝 𝑥 𝑓 𝑥
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