
Reinforcement Learning
David I. Inouye

Credit: Souradip Pal (Spring 2024 GTA) drafted these slides.

Reinforcement Learning Algorithms Overview

David I. Inouye, Purdue University

2

Environment

RL Algorithm

Policy (𝜋𝜃)

Agent

S
im

u
la

te
d
 t

ra
je

ct
o
ri

es
 (

 S t
,

 𝑅
𝑡
,

መ 𝐴
𝑡
,

መ 𝑆 𝑡
+

1
…

)

Environment Model

Policy

Update

Reward (𝑅𝑡)

A
ctio

n
s (𝐴

𝑡)

State

(𝑆𝑡)

• Recall that our aim is to find the optimal policy
which maximizes the expected return (discounted
sum of future rewards)

• Policies can be compared based on value functions
(policy ≈ value function), thus need a way to compute
value function (Prediction) – Policy Evaluation

• Starting with an arbitrary policy improve the policy to
reach optimal policy (Control) – Policy Iteration
• Optimal policy can be constructed from optimal value

function, improve value function - Value Iteration

• What if environment(MDP) is unknown?
• Estimate value function via. reward sampling (Model Free)
• Or learn a model of the environment (Model Based), then

compute value function (simulated experience)

• What if MDP has continuous or infinite states?
• Use parameterized function approximators for value

function (Value based) or policy(Policy Based)
• Search or learn parameters (gradient free or gradient

based searching)

Reward (𝑅𝑡)

Categorizing RL Algorithms

David I. Inouye, Purdue University

3

Model Free
(Monte Carlo/Temporal Difference)

Model based

RL Algorithms

Value Based Policy Based

On-Policy Off-Policy

SARSA Q-Learning

Gradient Free Gradient Based

REINFORCE

TRPO/PPODQN

Model given Learn the

model

Dyna-Q

World models

I2A

ACKTR
C51 DDQN DDPG

TD3 SAC A2C/A3C

ACQR-DQN

AlphaZero/

AlphaGo

MBMF

MBVE

Policy/Value

Iteration

Categorizing RL Algorithms

David I. Inouye, Purdue University

4

Model Free
(Monte Carlo/Temporal Difference)

Model based

RL Algorithms

Value Based Policy Based

On-Policy Off-Policy

SARSA Q-Learning

Gradient Free Gradient Based

REINFORCE

TRPO/PPODQN

Model given Learn the

model

Dyna-Q

World models

I2A

ACKTR
C51 DDQN DDPG

TD3 SAC A2C/A3C

ACQR-DQN

AlphaZero/

AlphaGo

MBMF

MBVE

Policy/Value

Iteration

(1.A) Policy Evaluation – How good is your policy?
• Evaluate a given policy 𝜋, estimate 𝑣𝜋

• Also known as a Prediction problem
• Input: Known MDP 𝒮, 𝒜, 𝒫, ℛ, 𝛾 and policy 𝜋
• Output: Value function 𝑣𝜋

• Solution - Iterative application of Bellman
equation and dynamic programming
• At each iteration 𝑘 + 1, update 𝑣𝑘+1(𝑠) from 𝑣𝑘(𝑠′)

for all state 𝑠 and successor states 𝑠′

• 𝑣𝑘+1 𝑠 = σ𝑎,𝑟,𝑠′ 𝜋 𝑎 𝑠 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝑘 𝑠′

David I. Inouye, Purdue University

5

Random policy

𝜋 𝑎 𝑠 = 0.25
∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

Undiscounted

episodic MDP (𝛾 = 1)

Image Credit: Sutton and Barto book, Example 4.1, pp. 76.

Terminal state is gray

(1.B.1) Policy Iteration – How to improve a policy?
How to find the optimal policy ?

• Given a policy 𝜋, find optimal policy 𝝅* (Control)
• Evaluate the policy 𝜋, estimate 𝑣𝜋
• Improve policy by acting greedily with respect to 𝑣𝜋

• 𝜋′ 𝑠 = arg max
𝑎

𝑞𝜋 𝑠, 𝑎 = arg max
𝑎

(𝑟 + 𝛾 σ𝑠′ 𝑝𝑠𝑠′
𝑎 𝑣

𝜋
(𝑠′))

• 𝑞𝜋 𝑠, 𝜋′(𝑠) = max
𝑎

𝑞𝜋 𝑠, 𝑎 ≥ 𝑞𝜋 𝑠, 𝜋 𝑠 = 𝑣𝜋(𝑠)

• If improvement stops, we have reached the optimal
policy (also optimal value function)

• 𝑞𝜋 𝑠, 𝜋′(𝑠) = max
𝑎

𝑞𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝜋(𝑠) = 𝑣𝜋(𝑠)

• Bellman Optimality equation is satisfied
• 𝑣𝜋 𝑠 = max

𝑎
𝑞𝜋 𝑠, 𝑎 = 𝒗∗ 𝑠 for all 𝑠

David I. Inouye, Purdue University

6

0.0 -1.0 -2.0 -3.0

-1.0 -2.0 -3.0 -2.0

-2.0 -3.0 -2.0 -1.0

-3.0 -2.0 -1.0 0.0

0 -14 -20 -22

-14 -18 -20 -20

-20 -20 -18 -14

-22 -18 -14 0

𝑣𝑘 𝜋𝑘

𝑘 = 1

𝑘 = 2

0.0 -1.0 -2.0 -3.0

-1.0 -2.0 -3.0 -2.0

-2.0 -3.0 -2.0 -1.0

-3.0 -2.0 -1.0 0.0

𝑘 = ∞

Image Credit: Sutton and Barto

(1.B.2) Value Iteration – Estimate optimal value function

• Find optimal value function 𝑣∗ directly (get
optimal policy 𝜋* from 𝑣∗)
• Unlike policy iteration, there is no explicit policy

• Use Bellman Optimality equation to get 𝑣∗ 𝑠
from the solution to subproblems 𝑣∗ 𝑠′

• Solution - Iterative application of Bellman
optimality equation and dynamic programming
• At each iteration 𝑘 + 1, update 𝑣𝑘+1(𝑠) from

 𝑣𝑘(𝑠′) for all state 𝑠 and successor states 𝑠′

• 𝑣𝑘+1 𝑠 = max
𝑎

σ𝑠′ 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝑘 𝑠′

David I. Inouye, Purdue University

7

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.0 -1.0 -2.0 -3.0

-1.0 -2.0 -3.0 -2.0

-2.0 -3.0 -2.0 -1.0

-3.0 -2.0 -1.0 0.0

𝑘 = 1

𝑘 = 2

𝑘 = ∞

𝑣𝑘

𝜋*

𝑣*

Image Credit: Sutton and Barto

Categorizing RL Algorithms

David I. Inouye, Purdue University

8

Model Free
(Monte Carlo/Temporal Difference)

Model based

RL Algorithms

Value Based Policy Based

On-Policy Off-Policy

SARSA Q-Learning

Gradient Free Gradient Based

REINFORCE

TRPO/PPODQN

Model given Learn the

model

Dyna-Q

World models

I2A

ACKTR
C51 DDQN DDPG

TD3 SAC A2C/A3C

ACQR-DQN

AlphaZero/

AlphaGo

MBMF

MBVE

Policy/Value

Iteration

(2.A.1) Monte Carlo Policy Evaluation - Estimate value
function for unknown MDPs (Model Free Prediction)

• No knowledge of MDP transitions
or rewards
• Observe the environment by sampling

trajectories
• Learn directly from experience (multiple

episodes)

• Estimate value function
• Take the mean of the returns observed
• Consider complete episodes

• Assumptions
• Applicable to episodic MDPs
• All episodes must terminate (finite

horizon MDPs)

David I. Inouye, Purdue University

9

First(Every) -Visit MC Evaluation
• Initialize 𝑁 𝑠 = 0, 𝐺 𝑠 = 0 ∀𝑠 ∈ 𝒮
• Loop

• Sample episode following policy 𝜋

(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇)
• For each state 𝑠

• Define 𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + · · ·
 𝛾𝑇−1𝑅𝑇 as return from time step 𝒕

onwards where 𝒕 is the first(every) time

the state 𝒔 is visited until 𝑇 (the end of the

episode)

• Increment counter of total first(every)

visits 𝑁(𝑠) = 𝑁(𝑠) + 1
• Increment total return 𝐺(𝑠) = 𝐺(𝑠) + 𝐺𝑡

• Update estimate ො𝑣𝜋(𝑠) = 𝐺(𝑠)/𝑁(𝑠)

(2.A.2) Monte Carlo Policy Evaluation - Estimate value
function for unknown MDPs (Model Free Prediction)

• MC updates can be done incrementally
• Uses formula to calculate incremental mean 𝜇𝑘

of a sequence 𝑥1, 𝑥2, … , 𝑥𝑘

• 𝜇𝑘 = 𝜇𝑘−1 +
1

𝑘
(𝑥𝑘 − 𝜇𝑘−1)

• ො𝑣𝜋(𝑠) ← ො𝑣𝜋(𝑠) +
1

𝑁 𝑠
(𝐺𝑡 − ො𝑣𝜋 𝑠)

• Estimate state-action value function (𝑞)

• ො𝑞𝜋(𝑠, 𝑎) ← ො𝑞𝜋(𝑠, 𝑎) +
1

𝑁 𝑠,𝑎
(𝐺𝑡 − ො𝑞𝜋 𝑠, 𝑎)

• ො𝑞𝜋(𝑠, 𝑎) ← ො𝑞𝜋(𝑠, 𝑎) + 𝛼(𝐺𝑡 − ො𝑞𝜋 𝑠, 𝑎),
𝛼 can be viewed as step size or learning rate

• Limitations
• High variance estimator, require lots of data

• Episode must end before data from episode
can be used to update

David I. Inouye, Purdue University

10

Every-Visit Incremental MC
• Initialize 𝑁 𝑠, 𝑎 = 0, 𝐺 𝑠, 𝑎 = 0 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
• Loop

• Sample episode following policy 𝜋

(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇)
• For each state-action pairs (𝑠, 𝑎)

• Define 𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + · · ·
 𝛾𝑇−1𝑅𝑇 as return from time step 𝒕

onwards where 𝒕 is every time the state 𝒔

is visited and action 𝒂 is taken until 𝑇 (the

end of the episode)

• Increment counter of total every visits

𝑁(𝑠, 𝑎) = 𝑁(𝑠, 𝑎) + 1
• Update estimate ො𝑞𝜋 𝑠, 𝑎 = ො𝑞𝜋(𝑠, 𝑎) +

1

𝑁 𝑠,𝑎
(𝐺𝑡 − ො𝑞𝜋 𝑠, 𝑎)

(2.B) Monte Carlo Policy Optimization - Estimate
optimal value function for unknown MDPs (Model Free Control)

• No knowledge of MDP transitions or rewards
• Observe the environment by sampling

trajectories
• Learn directly from experience (multiple

episodes)

• Estimate the optimal value function
• Use Policy Iteration approach
• MC method in policy evaluation step
• Greedy policy improvement on action-value

function 𝑞

• 𝜋′ 𝑠 = arg max
𝑎

𝑞 𝑠, 𝑎

• Caveats
• Greedy policy improvement on state value

function (𝑣) not possible, requires MDP model
(i.e., only applicable to action-value function 𝑞)

• Might not explore all states - Can be solved using
stochastic policy (𝝐-greedy) to encourage
continuous exploration

David I. Inouye, Purdue University

11

Deterministic Policy Improvement
• For each state 𝑠 ∈ 𝒮 (𝑠 in episode)

• 𝜋 𝑠 = arg max ො𝑞(𝑠, 𝑎)
𝑎

𝝐-Greedy Policy Improvement
• For each state 𝑠 ∈ 𝒮 (𝑠 in episode)

• 𝑎∗ = arg max ො𝑞(𝑠, 𝑎)
𝑎

𝜋 𝑠, 𝑎 = ൞
1 − 𝝐 +

𝝐

𝓐
, 𝑖𝑓 𝑎 = 𝑎∗

𝝐

|𝓐|
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.A) Temporal Difference(TD) Learning - Estimate value function for
unknown MDPs (Model Free Prediction)

• Combination of Monte Carlo &
dynamic programming methods
• Immediately update estimate of 𝑣 after each

observed (𝑠, 𝑎, 𝑟, 𝑠′) tuple

• TD learns from incomplete episodes, by
bootstrapping

• Estimate value function
• Update value toward estimated target return

• TD target: 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1)
• TD error ∶ 𝛿𝑡 = [𝑅𝑡+1+𝛾 ො𝑣(𝑆𝑡+1)] − ො𝑣(𝑆𝑡)

• Advantages
• Lower variance than MC (although biased

estimator)

• Can be used in episodic or infinite-horizon
non-episodic MDPs

David I. Inouye, Purdue University

12

TD(0)/1-step TD Learning
• Initialize ො𝑣𝜋(𝑠) = 0 ∀𝑠 ∈ 𝒮, step size 𝛼 ∈ (0, 1)
• Loop

• Sample state 𝑆0

• For each step 𝑡 in episode until termination

• Take action 𝐴𝑡
based on policy 𝜋 at 𝑆𝑡

• Observe reward 𝑅𝑡+1 & next state 𝑆𝑡+1

• Update estimate ො𝑣𝜋(𝑆𝑡) ← ො𝑣𝜋(𝑆𝑡) +
𝛼([𝑅𝑡+1 + 𝛾 ො𝑣𝜋 𝑆𝑡+1] − ො𝑣𝜋 𝑆𝑡)

• 𝑆𝑡 ← 𝑆𝑡+1

(3.B.1) Model-Free Control with TD Methods
– SARSA (On-Policy TD Learning)
• Uses TD learning approach for policy

evaluation
• Estimate 𝑞 of the policy 𝜋 being followed

• 𝜖-Greedy policy improvement on action-
value function 𝑞

• Estimate action value function
• Update value toward estimated target

return given 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1
transition tuple (hence called SARSA)

• SARSA target: 𝑅𝑡+1 + 𝛾 ෝ𝑞𝜋 𝑆𝑡+1, 𝐴𝑡+1

• Advantages
• On-policy algorithm

• Converges to the optimal action-value
function. ො𝑞𝜋(𝑠, 𝑎) → 𝑞∗(𝑠, 𝑎)

David I. Inouye, Purdue University

13

SARSA
• Initialize ො𝑞 𝑠, 𝑎 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 arbitrarily,

ො𝑞 𝑠, 𝑎 = 0 if 𝑠 is terminal state, 𝛼 ∈ (0,1)
• Set initial 𝜖-greedy policy 𝜋 randomly

• Loop

• Sample state 𝑆0

• Sample action 𝐴0
at 𝑆0

based on policy 𝜋
• For each step 𝑡 in episode

• Take action 𝐴𝑡, observe 𝑅𝑡+1 and 𝑆𝑡+1

• Choose action 𝐴𝑡+1 at 𝑆𝑡+1based on 𝜋
• Update estimate ො𝑞𝜋(𝑆𝑡,

𝐴𝑡) ←
ො𝑞𝜋(𝑆𝑡, 𝐴𝑡) + 𝛼([𝑅𝑡+1 +
 𝛾 ො𝑞𝜋 𝑆𝑡+1, 𝐴𝑡+1] − ො𝑞𝜋(𝑆𝑡,

𝐴𝑡))
• Update policy 𝜋 𝑆𝑡 based on 𝜖-greedy

• 𝑆𝑡 ← 𝑆𝑡+1, 𝐴𝑡 ← 𝐴𝑡+1

On-policy versus Off-Policy Learning & Control
• On-policy learning

• Learn to estimate and evaluate a policy 𝜋 from experience obtained from following that
policy (same policy for prediction and control)

• Direct experience

• Off-policy learning
• Learn to estimate and evaluate a policy 𝜋𝑡(called target policy) using experience

gathered from following a different policy (called behavior policy 𝜋𝑏)

• Indirect experience, learn from observing humans or other agents

• Re-use experience generated from old policies

• Learn about optimal policy while following exploratory policy

• Learn about multiple policies while following one policy

• Need importance sampling corrections on returns along whole episode

• 𝐺𝑡
𝜋𝑡/𝜋𝑏

= 𝜋𝑡(𝐴𝑡|𝑆𝑡)

𝜋𝑏(𝐴𝑡|𝑆𝑡)

𝜋𝑡(𝐴𝑡+1|𝑆𝑡+1)

𝜋𝑏(𝐴𝑡+1|𝑆𝑡+1)
…

𝜋𝑡(𝐴𝑇|𝑆𝑇)

𝜋𝑏(𝐴𝑇|𝑆𝑇)
𝐺𝑡

David I. Inouye, Purdue University

14

(3.B.2) Model-Free Control with TD Methods
– Q Learning (Off-Policy TD Learning)
• Q-learning is an off-policy RL algorithm

on action-values 𝑞

• Maintain state-action 𝑞 estimates for
bootstrapping
• Use the value of the best future action
• Stochastic approximation like SARSA

• Estimate action value function
• Next action is chosen using behavior policy

𝐴𝑡+1~ 𝜋𝑏(𝑆𝑡)
• Consider all alternative successor action

𝐴′~ 𝜋(𝑆𝑡), take best 𝐴′ for update
• Q-learning target: 𝑅𝑡+1 + 𝛾 max

𝐴′
 ො𝑞 𝑆𝑡+1, 𝐴′

• Advantages
• No importance sampling required
• Allows both behavior and target policies to

improve

David I. Inouye, Purdue University

15

Q-Learning
• Initialize ො𝑞 𝑠, 𝑎 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 arbitrarily, ො𝑞 𝑠, 𝑎

= 0 if 𝑠 is terminal state, 𝛼 ∈ (0,1)
• Set initial 𝜖-greedy policy 𝜋𝑏 w.r.t ො𝑞
• Loop

• Sample state 𝑆0

• Set 𝜖-greedy policy 𝜋𝑏 w.r.t ො𝑞
• Sample action 𝐴0

at 𝑆0
based on policy 𝜋𝑏

• For each step 𝑡 in episode

• Take action 𝐴𝑡, observe 𝑅𝑡+1 and 𝑆𝑡+1

• Update estimate ො𝑞(𝑆𝑡+1, 𝐴𝑡+1) ←
ො𝑞(𝑆𝑡, 𝐴𝑡) + 𝛼([𝑅𝑡+1 +
 𝛾 max

𝐴′
 ො𝑞 𝑆𝑡+1, 𝐴′] − ො𝑞(𝑆𝑡, 𝐴𝑡))

• Update policy 𝜋 based on 𝜖-greedy on ො𝑞

• 𝑆𝑡 ← 𝑆𝑡+1

(4.A) Value Function Approximation – Scaling up RL

methods
• So far, we have been working with the tabular representation of the value

functions 𝑣(𝑠) or 𝑞 𝑠, 𝑎 and policy 𝜋(𝑎|𝑠) for finite and discrete MDPs

• But MDPs can be very large, need to scale up for large MDPs
• Too many states and/or actions to store in memory, state space can be continuous

• Too slow to learn the value of each state individually

• Solution – Estimate value function with function approximation
• ො𝑣 𝑠, 𝛉 ≈ 𝑣𝜋(𝑠) or ො𝑞 𝑠, 𝑎, 𝛉 ≈ 𝑞𝜋(𝑠, 𝑎) where the value function is parameterized by 𝛉

• Update parameter 𝛉 using MC and TD methods (supervised learning)

• Generalizes to unseen states and/or actions

• Common Function Approximators (consider only differentiable ones)

David I. Inouye, Purdue University

16

• Linear combination of features

• Neural Networks

• Nearest Neighbors

• Decision Trees

(4.A.1) Linear Value Function Approx. by Gradient Descent

• Represent state by a feature vector 𝐱 𝑠 = [𝑥1 𝑠 , 𝑥2 𝑠 , … , 𝑥𝑛(𝑠)]𝑇

• Represent value function by a linear combination of features
• ො𝑣 𝑠, 𝛉 = 𝐱(𝑠)𝑇𝛉, where 𝛉 = [𝜃1, 𝜃2, … , 𝜃𝑛]𝑇

• Find parameter vector 𝛉 minimizing the mean-squared error between approximate
value function ො𝑣 𝑠, 𝛉 and true value function 𝑣𝜋(𝑠) (value objective function)

• 𝐽 𝛉 = 𝔼𝜋 𝑣𝜋 𝑠 − ො𝑣 𝑠, 𝛉
2

• 𝐽linear 𝛉 = 𝔼𝜋 𝑣𝜋 𝑠 − 𝐱(𝑠)𝑇𝛉 2 (for linear value function approx.)

• Apply gradient descent(or SGD) to find local minimum by updating parameters

• Update rule: ∆𝛉 = −
𝟏

𝟐
𝜶𝛁𝐽 𝛉 = 𝜶 𝔼𝜋 𝑣𝜋 𝑠 − ො𝑣 𝑠, 𝛉 𝛁𝛉 ො𝑣 𝑠, 𝛉

• SGD update rule: ∆𝛉 = 𝜶 𝑣𝜋 𝑠 − ො𝑣 𝑠, 𝛉 𝛁𝛉 ො𝑣 𝑠, 𝛉

• SGD update rule for linear value function approx.: ∆𝛉 = 𝜶 𝑣𝜋 𝑠 − ො𝑣 𝑠, 𝛉 𝐱 𝑠

• Stochastic gradient descent converges to global optimum

• Seems great…but we don’t know 𝑣𝜋!

David I. Inouye, Purdue University

17

(4.A.1) Incremental Prediction/Control Algorithm –
MC/TD with Function Approx.
• In practice, we don’t have true value function 𝑣𝜋 for prediction, we only

have rewards through environment interaction, thus substitute target for 𝑣𝜋
• For MC, the target is the return 𝐺𝑡

• ∆𝛉 = 𝜶 𝐺𝑡 − ො𝑣 𝑆𝑡 , 𝛉 𝛁𝛉 ො𝑣 𝑆𝑡 , 𝛉

• For TD(0), the target is the TD target 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝛉)
• ∆𝛉 = 𝜶 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝛉) − ො𝑣 𝑆𝑡 , 𝛉 𝛁𝛉 ො𝑣 𝑆𝑡 , 𝛉

• In control, approximate action-value function ො𝑞 𝑠, 𝑎, 𝛉 , substitute target for
true value of 𝑞𝜋
• For MC, the target is the return 𝐺𝑡

• ∆𝛉 = 𝜶 𝐺𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝛉 𝛁𝛉 ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝛉

• For TD(0), the target is the TD target 𝑅𝑡+1 + 𝛾 ො𝑞(𝑆𝑡+1, 𝐴𝑡+1, 𝛉)
• ∆𝛉 = 𝜶 𝑅𝑡+1 + 𝛾 ො𝑞(𝑆𝑡+1, 𝐴𝑡+1, 𝛉) − ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝛉 𝛁𝛉 ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝛉

• (4.B) Approximate Policy Iteration - Do approximate policy evaluation using
ො𝑞 𝑠, 𝑎, 𝛉 ≈ 𝑞𝜋 followed by 𝜖-greedy policy improvement

David I. Inouye, Purdue University

18

Categorizing RL Algorithms

David I. Inouye, Purdue University

19

Model Free
(Monte Carlo/Temporal Difference)

Model based

RL Algorithms

Value Based Policy Based

On-Policy Off-Policy

SARSA Q-Learning

Gradient Free Gradient Based

REINFORCE

TRPO/PPODQN

Model given Learn the

model

Dyna-Q

World models

I2A

ACKTR
C51 DDQN DDPG

TD3 SAC A2C/A3C

ACQR-DQN

AlphaZero/

AlphaGo

MBMF

MBVE

Policy/Value

Iteration

Model-Based Reinforcement Learning –
Integrating Learning and Planning
• Previous approach – Model Free RL

• No model (unknown transition function 𝒫 and
reward function ℛ)

• Learn value function/policy directly from experience

• New Approach – Model Based RL
• First learn(estimate) model from experience
• Plan for optimal value function/policy using learned

model
• Integrate learning and planning into a single

architecture
• Possible to efficiently learn model using supervised

learning methods
• Can understand model uncertainty
• Model-based RL is only as good as the estimated

model. When the model is inaccurate, planning
process will compute a suboptimal policy.

David I. Inouye, Purdue University

20

Model ℳ𝜂

𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠
 MDP 𝒮, 𝒜, 𝒫, ℛ, 𝛾

ℳ𝜂 = 𝒫𝜂, ℛ𝜂 (𝜂 is the parameter)

𝒫𝜂 ≈ 𝒫 ℛ𝜂 ≈ ℛ

Image Credit: Sutton and Barto

(5.A/B) Integrated Architectures – Dyna (Dyna-Q Algorithm)

• Dyna
• Learn model from real experience
• Learn and plan value function/policy from

both real & simulated experience (Q-Learning)

• Involves one-step interaction(acting) with
the environment and 𝑛 steps planning

• Store experience, get better policy with
fewer environment interactions

David I. Inouye, Purdue University

21

Tabular Dyna-Q
• Initialize ො𝑞 𝑠, 𝑎 and ℳ 𝑠, 𝑎 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
• Loop

• Sample current state 𝑆𝑡
• Sample action 𝐴𝑡 at 𝑆𝑡 based on 𝜖-greedy on ො𝑞

• Take action 𝐴𝑡, observe 𝑅𝑡+1 and 𝑆𝑡+1

• ො𝑞(𝑆𝑡+1, 𝐴𝑡) ← ො𝑞(𝑆𝑡, 𝐴𝑡) + 𝛼([𝑅𝑡+1 +
 𝛾 max

𝐴′
 ො𝑞 𝑆𝑡+1, 𝐴′] − ො𝑞(𝑆𝑡, 𝐴𝑡))

• ℳ 𝑆𝑡, 𝐴𝑡 ← 𝑅𝑡+1, 𝑆𝑡+1

• Loop 𝑛 times

• Sample random state s
• Sample random previous action 𝑎 at 𝑠
• 𝑟, 𝑠′ ← ℳ(𝑠, 𝑎)
• ො𝑞(𝑠, 𝑎) ← ො𝑞(𝑠, 𝑎) + 𝛼([𝑟 +

 𝛾 max
𝑎′

 ො𝑞 𝑠′, 𝑎′] − ො𝑞(𝑠, 𝑎))

Image Credit: Sutton and Barto

Categorizing RL Algorithms

David I. Inouye, Purdue University

22

Model Free
(Monte Carlo/Temporal Difference)

Model based

RL Algorithms

Value Based Policy Based

On-Policy Off-Policy

SARSA Q-Learning

Gradient Free Gradient Based

REINFORCE

TRPO/PPODQN

Model given Learn the

model

Dyna-Q

World models

I2A

ACKTR
C51 DDQN DDPG

TD3 SAC A2C/A3C

ACQR-DQN

AlphaZero/

AlphaGo

MBMF

MBVE

Policy/Value

Iteration

Policy-Based RL – Policy Gradient Methods
• Previously, we approximated the value functions using parameters 𝛉

• Obtained policy from value function ො𝑣 𝑠, 𝛉 or ො𝑞 𝑠, 𝑎, 𝛉 using 𝜖-greedy

• Now, directly parameterize and learn the policy 𝜋𝜃 𝑠, 𝑎 = ℙ[𝑎|𝑠, 𝛉]
• Model-Free RL, better convergence properties, can learn stochastic policies

• Effective in high-dimensional or continuous action spaces

• Typically converge to a local rather than global optimum

• Evaluating a policy is typically inefficient and high variance

• Given a policy 𝜋𝜃 𝑠, 𝑎 with parameters 𝛉, find best 𝛉 which maximizes 𝐽 𝛉
• Policy Objective Function 𝐽 𝛉 - Measures quality of policy 𝜋𝜃

• Episodic environments: 𝐽 𝛉 = 𝑣𝜋𝜃
(𝑠1, 𝛉)(also called start value)

• Continuing environments: 𝐽 𝛉 = σ𝑠 𝑑𝜋𝜃
𝑠 𝑣𝜋𝜃

(𝑠, 𝛉) (also called average value), 𝑑𝜋𝜃
𝑠 is the

stationary distribution of Markov chain for 𝜋𝜃

• Can use gradient free optimization, but greater efficiency possible using gradient

• Policy Gradient Methods:
• Search for local maximum by ascending the policy gradient with 𝛉: ∆𝛉 = 𝜶𝛁𝜽𝐽 𝛉

David I. Inouye, Purdue University

23

(6.B) Monte Carlo Policy Gradient – REINFORCE

• Policy Gradient Theorem
• For any differentiable policy

𝛁𝜽𝐽(𝛉) = 𝔼𝜋𝜃

𝒕=𝟎

𝑻

𝛁𝜽 log 𝜋𝜃 𝑆𝑡 , 𝐴𝑡 𝑞𝜋𝜃
𝑆𝑡 , 𝐴𝑡

• 𝛁𝜽log 𝜋𝜃(𝑠, 𝑎) is called the score function
• Key observations

• It allows gradients of policy instead of value.

• The action value 𝑞𝜋𝜃
 can be approximated.

• Many choices of differentiable policy 𝜋𝜃 –
Softmax, Gaussian, Neural Networks

• Monte Carlo Policy Gradient
• Update parameters by stochastic gradient ascent,

use policy gradient theorem
• Use return 𝐺𝑡 as an unbiased estimate of

𝑞𝜋𝜃
(𝑆𝑡, 𝐴𝑡)

• ∆𝛉 = 𝛼𝛁𝜽log 𝜋𝜃 𝑆𝑡, 𝐴𝑡 𝐺𝑡

• MC policy gradient has high variance
• Use actor-critic methods to reduce variance

David I. Inouye, Purdue University

24

REINFORCE
• Initialize policy parameters 𝛉 arbitrarily

• Loop

• Sample episode following policy 𝜋𝜃

(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇)
• For 𝑡 = 1 to 𝑇 − 1

• 𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + · · ·
 𝛾𝑇−1𝑅𝑇

• 𝛉 ← 𝛉 + 𝛼𝛁𝜽 log 𝜋𝜃 𝑆𝑡, 𝐴𝑡 𝐺𝑡

• Return 𝛉

(7.B) Advanced Policy Gradient Algorithms – Trust
Region Methods (TRPO/PPO)

• General policy gradient algorithms try to solve the optimization problem

max
𝛉

 𝐽 𝜋𝜃 = 𝔼𝜏~𝜋𝜃
[

𝑡=0

∞

𝛾𝑡𝑅𝑡]

• Use stochastic gradient ascent on policy parameters 𝛉 using policy gradient 𝑔
• 𝑔 = 𝛁𝜽𝐽 𝜋𝜃 = 𝔼𝜏~𝜋𝜃

[σ𝑡=0
∞ 𝛾𝑡 𝛁𝜽log 𝜋𝜃 𝐴𝑡|𝑆𝑡 𝐀𝜋𝜃

(𝑆𝑡 , 𝐴𝑡)]

• Advantage function 𝐀𝝅𝜽
𝒔, 𝒂 = 𝒒𝝅𝜽

𝒔, 𝒂 − 𝒗𝝅𝜽
(𝒔), relative advantage of an action i.e. how much

better to take action 𝒂 in state 𝒔 over randomly selecting any other action and following 𝜋𝜃 after

• However, its sample efficiency is poor as it searches in parameter space instead of policy
space. Also, the method is dependent on step size.

• Trust Region Methods – Proximal Policy Optimization(PPO)
• Define ℒ𝜋 𝜋′ ≈ 𝐽 𝜋′ − 𝐽(𝜋) (𝜋′ → new policy, 𝜋 → old policy), improvement over old policy

• Update 𝛉 incrementally, approximately penalize policies from changing too much between steps

• Adaptive KL Penalty: 𝛉𝑘+1 = argmax
𝛉

 ℒ𝛉𝑘
𝛉 − 𝛽𝑘𝐾𝐿(𝛉||𝛉𝑘), 𝛽𝑘 is the penalty coefficient

• Clipped Objective: 𝛉𝑘+1 = argmax
𝛉

 ℒ𝛉𝑘

𝐶𝐿𝐼𝑃 𝛉 where

ℒ𝛉𝑘

𝐶𝐿𝐼𝑃 𝛉 = 𝔼𝜏~𝜋𝑘
[σ𝑡=0

𝑇 [min(𝑟𝑡 𝛉 𝐀𝜋𝒌
(𝑆𝑡 , 𝐴𝑡), clip 𝑟𝑡 𝛉 , 1 − 𝜖, 1 + 𝜖 𝐀𝜋𝑘

(𝑆𝑡 , 𝐴𝑡))]] ,

 𝑟𝑡 𝛉 = 𝜋𝜃 𝐴𝑡|𝑆𝑡 / 𝜋𝜃𝑘
𝐴𝑡|𝑆𝑡 , 𝜖 is a hyperparameter

David I. Inouye, Purdue University

25

Categorizing RL Algorithms

David I. Inouye, Purdue University

26

Model Free
(Monte Carlo/Temporal Difference)

Model based

RL Algorithms

Value Based Policy Based

On-Policy Off-Policy

SARSA Q-Learning

Gradient Free Gradient Based

REINFORCE

TRPO/PPODQN

Model given Learn the

model

Dyna-Q

World models

I2A

ACKTR
C51 DDQN DDPG

TD3 SAC A2C/A3C

ACQR-DQN

AlphaZero/

AlphaGo

MBMF

MBVE

Policy/Value

Iteration

RL Application: Reinforcement Learning using
Human Feedback - Finetuning ChatGPT

David I. Inouye, Purdue University

27
Example copied verbatim from https://openai.com/blog/chatgpt.

Summary of RL Algorithms
• Agent attempts to find optimal policies with highest returns via. environment

interaction
• Planning/Prediction evaluates a given policy and Learning/Control finds the optimal policy

• Policy Iteration for control involves value function estimation and policy improvement steps

• Model-Free learning does not require model of the environment (MDP)
• Monte Carlo (MC) estimates the future returns by sampling returns via. environment interaction

• Temporal Difference (TD) estimates the future returns in a more online manner

• SARSA (On-policy) and Q-Learning (off-policy) uses MC/TD for model-free control

• Model-Based learning like Dyna-Q estimates the model of the environment (MDP)

• The state-value, action-value functions and policies can be approximated for
large MDPs using neural networks or other parametric function approximators

• Policy gradient methods directly find optimal policies using gradient descent

• In practice, RL algorithms can be used in various applications like stock trading, self-
driving cars and even systems like ChatGPT

David I. Inouye, Purdue University

28

References

• Based on the excellent RL book by Sutton and Barto

• http://incompleteideas.net/book/the-book-2nd.html

• Some content borrowed from David Silver’s Lecture Notes

• https://www.davidsilver.uk/teaching/

• Additional help from Stanford CS234 course by Emma Brunskill

• https://web.stanford.edu/class/cs234/modules.html

• OpenAI Blogs

• https://openai.com/blog/chatgpt

• https://spinningup.openai.com/en/latest/index.html

David I. Inouye, Purdue University

29

http://incompleteideas.net/book/the-book-2nd.html
https://www.davidsilver.uk/teaching/
https://web.stanford.edu/class/cs234/modules.html
https://openai.com/blog/chatgpt
https://spinningup.openai.com/en/latest/index.html

	Default Section
	Slide 1: Reinforcement Learning
	Slide 2: Reinforcement Learning Algorithms Overview
	Slide 3: Categorizing RL Algorithms
	Slide 4: Categorizing RL Algorithms
	Slide 5: (1.A) Policy Evaluation – How good is your policy?
	Slide 6: (1.B.1) Policy Iteration – How to improve a policy? How to find the optimal policy ?
	Slide 7: (1.B.2) Value Iteration – Estimate optimal value function
	Slide 8: Categorizing RL Algorithms
	Slide 9: (2.A.1) Monte Carlo Policy Evaluation - Estimate value function for unknown MDPs (Model Free Prediction)
	Slide 10: (2.A.2) Monte Carlo Policy Evaluation - Estimate value function for unknown MDPs (Model Free Prediction)
	Slide 11: (2.B) Monte Carlo Policy Optimization - Estimate optimal value function for unknown MDPs (Model Free Control)
	Slide 12: (3.A) Temporal Difference(TD) Learning - Estimate value function for unknown MDPs (Model Free Prediction)
	Slide 13: (3.B.1) Model-Free Control with TD Methods – SARSA (On-Policy TD Learning)
	Slide 14: On-policy versus Off-Policy Learning & Control
	Slide 15: (3.B.2) Model-Free Control with TD Methods – Q Learning (Off-Policy TD Learning)
	Slide 16: (4.A) Value Function Approximation – Scaling up RL methods
	Slide 17: (4.A.1) Linear Value Function Approx. by Gradient Descent
	Slide 18: (4.A.1) Incremental Prediction/Control Algorithm – MC/TD with Function Approx.
	Slide 19: Categorizing RL Algorithms
	Slide 20: Model-Based Reinforcement Learning – Integrating Learning and Planning
	Slide 21: (5.A/B) Integrated Architectures – Dyna (Dyna-Q Algorithm)
	Slide 22: Categorizing RL Algorithms
	Slide 23: Policy-Based RL – Policy Gradient Methods
	Slide 24: (6.B) Monte Carlo Policy Gradient – REINFORCE
	Slide 25: (7.B) Advanced Policy Gradient Algorithms – Trust Region Methods (TRPO/PPO)
	Slide 26: Categorizing RL Algorithms
	Slide 27: RL Application: Reinforcement Learning using Human Feedback - Finetuning ChatGPT
	Slide 28: Summary of RL Algorithms
	Slide 29: References

