Reinforcement Learning

David I. Inouye

Credit: Souradip Pal (Spring 2024 GTA) drafted these slides.

? PURDUE Elmore Family School of Electrical

UNIVERSITY and Computer Engineering

Reinforcement Learning Algorithms Overview

* Recall that our aim is to find the optimal policy
T Agent) which maximizes the expected return (discounted

sum of future rewards)
Policy (g) * Policies can be compared based on value functions
Polic (policy = value function), thus need a way to compute
y ; . . ;
Update value function (Prediction) — Policy Evaluation
[RI Algorithm } * Starting with an arbitrary policy improve the policy to
_) reach optimal policy (Control) — Policy Iteration
* Optimal policy can be constructed from optimal value
IFeward (Rr) function, improve value function - Value Iteration
Environment } * What if environment(MDP) is unknown?
L * Estimate value function via. reward sampling (Model Free)
1Reward (Ry) * Orlearn a model of the environment (Model Based), then

- - ———

(! compute value function (simulated experience)

e What if MDP has continuous or infinite states?

* Use parameterized function approximators for value
function (Value based) or policy(Policy Based)

* Search or learn parameters (gradient free or gradient
based searching)

Categorizing RI. Algorithms
RL Algorithms J
¢ : | !
Model Free Model based
(Monte Carlo /Temporal Difference))
| v Y | v N
; . . | ! model
On-Polic [Off-Polic radient Free | Gradient Base . , na- |
v y Gradient F (Grad d Polhcy/ Value Dyna-Q
) L teration) . 3
4’[SARSA] ': Q-Learning] » REINFORCE AlphaZero/ | World models |
__AlphaGo J | 1A |
{ DQN | | TRPO/PPO —
¢ I < ! , MBMF
| c51 [DDON | | QRDQN][DDPG _ACKIR MEBVE

Jr—‘—#

D3 || sac | | A2c/A5C |

-
J

David L. Inouye, Purdue University

Categorizing RI. Algorithms

Ve

.

RL Algorithms J

v

v
{ Model Free

(Monte Carlo /Temporal Difference))

|
v

* [Policy Based]
v l v

{ Y

—[On-Policy] Off-Policy] [Gradient Free]
a[SARSA] » Q-Learning |
 DQN |

[c;][DD¢QN] [QR})QN] [DI;PG

Jr—‘—#

Gradient Based |

y

REINFORCE

A

TRPO/PPO

ACKTR

D3 || sac | | A2c/A5C |

{ Model based]
|

v v
@Odel given Le arn the
model

\

(Policy/Value i Dyna-Q

Iteration |

g

(AlphaZero/)

r World models |

AlphaGo J) 124

MBMF

MBVE

4

David L. Inouye, Purdue University

(1.A) Policy Evaluation — How good 1s your policy?

* Evaluate a given policy T, estimate Uy

* Also known as a Prediction problem
* Input: Known MDP (S, A, P, R,) and policy 7

* Output: Value function v, actions

* Solution - Iterative application of Bellman
equation and dynamic programming

* At each iteration k + 1, update vy, 1(S) from v, (s")
for all state S and successor states S’

* Uk+1(S) = Za,‘r,s’ r(als) P(S', rls, a)[r + yvk(s’)]

vEa1(s) s

Image Credit: Sutton and Barto book, Example 4.1, pp. 76.

1

2

3

4 2

6

7

8 9

10

11

12 13

14

Random policy
n(als) = 0.25
VseES,a€EA

I3

Undiscounted
episodic MDP (y = 1)
r= -1
on all transitions

Terminal state is gray

00| 0.0 00|00
00| 00 00|00
00| 00 00|00
00| 00| 00]00

0.0f-1.0{-1.0]-1.0
-1.0]-1.0]-1.0|-1.0
-1.0]-1.0]-1.0|-1.0
-1.00-1.0]-1.0) 0.0

0.0[-1.7[-2.0]-2.0
-1.7]-2.0]-2.0]-2.0
-2.0]-2.0]-2.00-1.7
-2.0]-2.0]-1.71 0.0

5

David L. Inouye, Purdue University

(1.B.1) Policy Iteration — How to improve a policy?

How to tind the optimal policy ?

* Given a policy 7, find optimal policy T« (Control)
* Evaluate the policy T, estimate vy
* Improve policy by acting greedily with respect to v,

» '(s) = arg maxq(s,a) = argmax(r +y Xy pssv,_(s'))
y qTL'(Si T[,(S)) — mC?X qTL'(Sl a) = CIn(S»T[(S)) = vn(s)

* If improvement stops, we have reached the optimal
policy (also optimal value function)
* qn(s, ' (5)) = maxqr(s, a) = qn(s,m(s)) = vr(s)
* Bellman Optimality equation is satisfied
e v.(s) =maxq,(s,a) = v.(s) forall s
a

evaluation

m
IT V stz‘i/rt:ir:g V:
m—>greedy(V'))
improvement

Image Credit: Sutton and Barto

k=1

k=2

Ty Vg
A A
< > < >l e q 0 14 1 220 | -22
A l{ A: }[
< < < > -14 -18 20 | -20
\4 v v \4
A A A A
< < >< >le > 20| <20 | 18 | -14
A 1[
Pl >le > 221 -18 | -14 0
- 00 | -1.0 | 20|30
ol - | | 1.0 |20 |30 | 20
ot =l 20|30 |20/ 10
g SN N 30| -201(-101]00
- 00 | 1.0 | 20| 3.0
t et et 1.0 | 20 | 3.0 | 2.0
v il
Tl oy 2013020110
y
Y, 30| 20 |10 00

6

David 1. Inouye, Purdue University

(1.B.2) Value Iteration — Estimate optimal value function

* Iind optimal value function v, directly (get
optimal policy . from v,)
* Unlike policy iteration, there is no explicit policy

* Use Bellman Optimality equation to get v,(s)
from the solution to subproblems v, (s")

* Solution - Iterative application of Bellman
optimality equation and dynamic programming
* At each iteration k + 1, update vy (s) from

v, (s") for all state S and successor states S’
* Vi1 (s) = max X, p(s',rls, a) [r +yv(s7]

Vk+1(5) = max (Ri + Z P vk(s’))

eA
? s'eS

Vi1 = max R? + ~P?v,
acA

Image Credit: Sutton and Barto

k=1

k=2

David 1. Inouye, Purdue University

Vg
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
T«
00 | 10| -10 | -1.0 — |5
10| <10 10| -1.0 ? <_T <
v v
? A
10| <10 10| -1.0 >
y | v
10| <10 | -1.0 0.0 L» —»
0.0 -1.0 20 | -3.0
-1.0 | -20 30 | -2.0
Vi«
20 1 -3.0 20 | -1.0
30] -20 -1.0 | 0.0

Categorizing RI. Algorithms

[RL Algorithms J

o Z—

Model Free
(Monte Carlo /Temporal Difference)

<

—{ On-Policy | | Off-Policy]

A

Q-Learning]

A

o SARSA |
DON

)

[Policy Based]
|

v
[Gradient Free]

I
v v v

v

[C51][DDQN] [QR-DQN] [DDPG

Jr—‘—#

y

v

Gradient Based |

REINFORCE

A

TRPO/PPO

ACKTR

D3 || sac | | A2c/A5C |

v

{ Model based]
|

v v
4[Model given] Learn the
model |
f Po]icy/Value b Dyna—Q |

_ Iteration

- AlphaZero/ N \ World models)

| AlphaGo) | 2A

MBMF

MBVE

8

David L. Inouye, Purdue University

(2.A.1) Monte Carlo Policy Evaluation - Estimate value
function for unknown MDPs (Model Free Prediction)

* No knowledge ot MDP transitions
or rewards

* Observe the environment by sampling
trajectories

* Learn directly from experience (multiple
episodes)
* Hstimate value function
* Take the mean of the returns observed
* Constder complete episodes

* Assumptions
* Applicable to episodic MDPs

* All episodes must terminate (finite
horizon MDPs)

/ First(Every) -Visit MC Evaluation\

e Initialize N(s) = 0,G(s) =0Vs €S
* Loop
* Sample episode following policy 7
(S0, Ao, R1,S1, A1, Ry, ., S7—1, A7—1, R7)
* For each state s
* Define G, = R, + YRt11 + V*Rpyp + - -
yT71R; as return from time step &
onwards where t is the first(every) time
the state § is visited until T' (the end of the
episode)

* Increment counter of total first(every)

Increment total return G(s) = G(S) + G
Update estimate U,(s) = G(s)/N(s) /

visits N(s) = N(s) + 1

(2.A.2) Monte Carlo Policy Evaluation - F

H stimate value

function for unknown MDDPs (Model Free Prediction)

* MC updates can be done incrementally
* Uses formula to calculate incremental mean [

of a sequence X1, Xy, ..., Xi
1
* Up = Ug-1 +_(xk —.Uk 1)
* ﬁn(s) n(S) + (Gt n(S))

* Estimate state-action value function (q)
* (s, @) < Qu(5, @) + 5 (G = Gnls, @)
o qn_(s a) «— qT[(S Cl) + a(Gt Cln(S a))

a can be viewed as step size or learning rate
* Limitations
* High variance estimator, require lots of data

* Episode must end before data from episode
can be used to update

/ Every-Visit Incremental MC \

e Initialize N(s,a) = 0,G(s,a) = 0Vs € S,a € A
* Loop
* Sample episode following policy
(SOI AO' er Sl) Al: RZI 100 ST—1; AT—1; RT)
* For each state-action pairs (s, a)

* Define G, = R, + YRt11 + V?Rpyp + -+
¥YT71R; as return from time step €
onwards where € is every time the state §
is visited and action @ is taken until T (the
end of the episode)

* Increment counter of total every visits

N(s,a) =N(s,a)+ 1

= qr(s,a) +

/

* Update estimate § (s, @)
(Gt - q\n(s; Cl))

N(s,a)

"

(2.B) Monte Carlo Policy Optimization - Estimate

optimal value function for unknown

* No knowledge of MDP transitions or rewards

* Observe the environment by sampling
trajectories

* Learn directly from experience (multiple
episodes)
* Estimate the optimal value function
* Use Policy Iteration approach
MC method in policy evaluation step

Greedy policy improvement on action-value
function q

n'(s) = arg max q(s,a)
a

e Caveats

* Greedy policy improvement on state value
function (V) not possible, requires MDP model
(i.e., only applicable to action-value function q)

* Might not explore all states - Can be solved using
stochastic policy (€-greedy) to encourage
continuous exploration

Ps (Model Free Control)

(o

eterministic Policy Improvem

For each state s € § (s in episode)

« 7m(s) =argmaxq(s,a)
a

€-Greedy Policy Improvement
For each state s € § (s in episode)

* a,=argmaxj(s,a)
a

1—€e+—,
|Al

€ .
— ,otherwise

if a=a,

(s, a) =

|A|

\

~

ent

/

(3.A) Temporal Ditfference(TD) Learning - Estimate value function for
unknown MDPs (Model Free Prediction)

* Combination of Monte Carlo &
dynamic programming methods

* Immediately update estimate of v after each
observed (s,a,r,s") tuple

* TD learns from incomplete episodes, by
bootstrapping

* Hstimate value function
* Update value toward estimated target return
* TD target: Ryyq + YU (Se41)
* TD etror: 0y = [Rep1 +YU(Ser1)] — U(Sp)
* Advantages

* Lower variance than MC (although biased
estimator)

* Can be used in episodic or infinite-horizon
non-episodic MDPs

-

~

TD(0)/1-step TD Learning

* Initialize U,(s) = 0 Vs € S, step size a € (0,1)
* Loop
e Sample state S

For each step t in episode until termination

"

Take action A, based on policy 7 at S,
Observe reward Ryyq & next state Sgqq
Update estimate U,(S;) < U,(S;) +

a([Rer1 + ¥U.(Ses1)] — 0:(5))

St < Sty

(3.B.1) Model-Free Control with TD Methods
— SARSA (On-Policy TD Learning)

* Uses TD learning approach for policy
evaluation SARSA

* Initialize §(s,a) Vs € §,a € A arbitrarily,
G(s,a) = 0if s is terminal state, & € (0,1)
Set initial €-greedy policy ™ randomly

* Loop

* Estimate q of the policy T being followed

* e-Greedy policy improvement on action- .
value function q

e Hstimate action value function * Sample state S
* Sample action 4, at S, based on policy 7

* Update value toward estimated target « For each step ¢ in episode

return given (St, At' Rt+1' St+1’ At+1)
transition tuple (hence called SARSA) + Choose action Ay, at Sps.based on 17

° SARSA target: Rt+1 +)/CTE(St+1,At+1) o Update estimate qn(st At) —

* Advantages Ga(Sp Ae) + a([Reyr +
° On_pO]jCy ﬂlg()fithm yqn(5t+1i‘4t+1)] o qn(st At))

, , * Update policy 1(S,) based on €-greedy
* Converges to the optimal action-value S S A4
. ~ t < Ot+1, Ar < Ay
function. §.(s,a) = q.(s,a)

* Take action A, observe Ry4q and S¢4q

On-policy versus Ott-Policy Learning & Control

* On-policy learning
* Learn to estimate and evaluate a policy 7 from experience obtained from following that
policy (same policy for prediction and control)

* Direct experience
* Off-policy learning

* Learn to estimate and evaluate a policy ¢ (called target policy) usin% experience
gathered from following a different policy (called behavior policy 7°)

Indirect experience, learn from observing humans or other agents

Re-use experience generated from old policies

Learn about optimal policy while following exploratory policy
Learn about multiple policies while following one policy

* Need importance sampling corrections on returns along whole episode

. Gnt/nb = (nt(AtlSt) mt(Ats11St41) nt(ATlST)) G
t b (A¢ISe) nP(Ar411Se4+1) T P (AT|ST)) Tt

(3.B.2) Model-Free Control with TD Methods
— (Q Learning (Off-Policy TD Learning)

* Q-learning is an off-policy RL algorithm
on action-values @

* Maintain state-action g estimates for
bootstrapping
* Use the value of the best future action
* Stochastic approximation like SARSA

e FEstimate action value function

* Next action is chosen using behavior policy
Apy1~ 1p(St)
* Consider all alternative successor action

A'~ 1 (S;), take best A" for update
* QQ-learning target: Ry 1 + Y max G(Se41,A)

* Advantages
* No importance sampling required
* Allows both behavior and target policies to
improve

/ Q-Learning \
* Initialize §(s,a) Vs € S, a € A arbitrarily, G(s, a)

= 0 if s is terminal state, @ € (0,1)
* Set initial €-greedy policy Ty w.t.t §
* Loop
¢ Sample state S
* Set e-greedy policy T wr.t G
* Sample action 4, at Sy based on policy 1},
* For each step t in episode
* Take action A, observe Ryyq and S¢4q
* Update estimate §(S¢41, A1) <

y max §(Se1,AD] = (St Ar))

q(Se A) + a([Reys +
* Update policy based on €-greedy on g
* S St

(4.A) Value Function Approximation — Scaling up R

methods
* So far, we have been working with the tabular representation ot the value
functions v(s) or q(s, a) and policy m(a|s) for finite and discrete MDPs

* But MDPs can be very large, need to scale up for large MDPs
* Too many states and/or actions to store in memorty, state space can be continuous

* Too slow to learn the value of each state individually

* Solution — Estimate value function with function approximation
* 9(5,0) = v,(s) or 4(s,a,0) = q,(s,a) where the value function is parameterized by 0

* Update parameter @ using MC and TD methods (supervised learning)

* GGeneralizes to unseen states and/or actions

* Common Function Approximators (consider only differentiable ones)

* Linear combination of features * Nearest Neighbors
e Neural Networks * Decision Trees

(4.A.1) Linear Value Function Approx. by Gradient Descent

* Represent state by a feature vector X(s) = [x1(8), x2(5), ..., X, ()]”

* Represent value function by a linear combination of features
. 9(s,0) = x(s)70, where 0 = [0, 05, ..., 0,]7

* Find parameter vector @ minimizing the mean-squared error between approximate
value function U(s, 0) and true value function v;(s) (value objective function)

£ J(8) = Eq [(vals) - 0(5,0)°]

*]linear(e) = En[(vn(s) — X(S)TB)Z] (for linear value function approx.)

* Apply gradient descent(or SGD) to find local minimum by updating parameters
+ Update rule: A® = —>aVj(8) = a E[(v,(s) — 5(s,8)) Vg1 (s, 0)]
* SGD update rule: AB = « [(vn(s) — D(s, 9))V917(S, 9)]
* SGD update rule for linear value function approx.: A@ = a [(vn(s) — D(s, 9))X(S)]

* Stochastic gradient descent converges to global optimum

(4.A.1) Incremental Prediction/Control Algorithm —
MC/TD with Function Approx.

* In practice, we don’t have true value function v, for prediction, we only
have rewards through environment interaction, thus substitute target for v

* For MC, the target is the return G,

e NO=a
* For TD(O),
e \O=a

the target is the TD target Ry + YU (S¢41,0)

:(Rt+1 +y0(St41,0) — D(S, 9))V979(5t, 9)]

* In control, approximate action-value function G(s,a, 0), substitute target for
true value of q
* For MC, the target is the return G,

e O =«
* For TD(O),
e NO=a«a

(Gt o Q\(St, At' 9))Veél\(5t; At: 9)]
the target is the TD target Ry q + YV q(St11,4¢41,0)

(Revr +¥3(Sts1,Are1,0) —G(Se, Ar, 0))Voq(Sy, A, 0))]

* (4.B) Approximate Policy Iteration - Do approximate policy evaluation using

g(s,a, Og ~

q, followed by €-greedy policy improvement

Categorizing RI. Algorithms

Ve

.

RL Algorithms J

v

[Policy Based]
|

v
Model Free
(Monte Carlo /Temporal Difference))
|
{ , ! :
—[On-Policy] Off-Policy] [Gradient Free]
a[SARSA] » Q-Learning |
{ DQN |

v v

I
v

v

[C51][DDQN] [QR-DQN] [DDPG

Jr—‘—#

y

v

Gradient Based |

REINFORCE

A

TRPO/PPO

ACKTR

D3 || sac | | A2c/A5C |

—[Model given]

v

{ Model based]

v

\

[teration

(Policy/Value

J

v
%
Learn the

model

_

Dyna-Q

g

AlphaGo

(AlphaZero/)

J

r World models |

I2A

MBMF

MBVE

19

David L. Inouye, Purdue University

Model-Based Reinforcement Learning —
Integrating [Learning and Planning

* Previous approach — Model Free RL value/policy
* No model (unknown transition function P and cting
reward function R) _)
: : : . planning direct
* Learn value function/policy directly from experience AL

* New Approach — Model Based RL

First learn(estimate) model from experience model experience

* Plan for optimal value function/policy using learned _/

mOdel mc-d_el
* Integrate learning and planning into a single leaming
architecture represents
* Possible to efficiently learn model using supervised Model M;, — MDP(S, A, P, R,y)

learning methods My = (an, fRn> (1 is the parameter)
* Can understand model uncertainty
Py =P Ry=R

* Model-based RL 1s only as good as the estimated
model. When the model is 1naccurate, planning
process will compute a suboptimal policy.

Image Credit: Sutton and Barto

(5 A / B) Integrated Architectures — Dyna (Dyna-Q Algorithm)

* Dyna |
* Learn model from real experience

* Learn and plan value function/policy from
both real & simulated experience (Q-Learning)

* Involves one-step interaction(acting) with
the environment and n steps planning

* Store experience, get better policy with
fewer environment interactions

The Dyna Architecture

SN

Policy/value functions

planning update

simulated
experience

direct RL
update

real
experience

model
learning

search
control

Model

Agent

[Environment] —

Image Credit Sutton and Barto

/ Tabular Dyna-Q
* Initialize §(s,a) and M(s,a) Vs € S,a € A

* Loop
e Sample current state S¢
* Sample action A, at S¢ based on €-greedy on §
* Take action A;, observe Ry4q1 and S¢ 41
* q(Se+1,A) < (S Ap) + a([Regq +
[1 q(St+1,A0] — §(St, Ar))

© M(St, Ar) < Rit1, Sern
* Loop n times

* Sample random state S

* Sample random previous action @ at S

e 1,8 « M(s,a)

q(s,a) < q(s,a) + a([r +
y max 4(s',a)] ~ (s,)
21
David 1. Inouye, Purdue University

Categorizing RI. Algorithms

Ve

RL Algorithms J
I

.

I
Model Free
(Monte Carlo /Temporal Diff, erence)
!
v
—[On-Pohcy Off-Pohcy] Gradlent Free Gradient Bas@
%[SARSA] »(Q-Learning | » REINFORCE
{ DQN | » TRPO/PPO
|
: * = : | ACKTR

[cs1][DDQN] [QR_DQN][DDPG \

Jr—‘—#

D3 || sac | | A2c/A5C |

v

{ Model based]

v

—[Model given]

(Policy/Value

_ Iteration

v

Learn the)
model

Dyna-Q

J
N

(AlphaZero/)

. AlphaGo)

r World models |

I2A

MBMF

MBVE

22

David L. Inouye, Purdue University

Policy-Based RI. — Policy Gradient Methods

* Previously, we approximated the value functions using parameters 0
* Obtained policy from value function ¥(s, 8) or §(s, a, 0) using €-greedy

* Now, directly parameterize and learn the policy mg(s,a) = P[als, 0]
* Model-Free RL, better convergence properties, can learn stochastic policies
* Effective in high-dimensional or continuous action spaces
* Typically converge to a local rather than global optimum
* Evaluating a policy is typically inefficient and high variance

* Given a policy g (s, a) with parameters 0, find best @ which maximizes J(0)
e Policy Objective Function J(0) - Measures quality of policy T
* Episodic environments: J(0) = U, (81,0)(also called start value)

* Continuing environments: J(0) = Yo d o (s)v, 5 (S, 0) (also called average value), dy, (s) is the
stationary distribution of Markov chain for gy

* Can use gradient free optimization, but greater etficiency possible using gradient

* Policy Gradient Methods:
e Search for local maximum by ascending the policy gradient with 0: A@ = aVyJ(0)

(6.B) Monte Carlo Policy Gradient — REINFORCE

* Policy Gradient Theorem
* For any differentiable policy
T

V@](B) — IETIQ
t=0
* Vplog my (s, a) is called the score function

Vg log mg (S, Ae) rg (Se, Ap)

* Key observations
* Itallows gradients of policy instead of value.

* The action value g, can be approximated.

* Many choices of differentiable policy mg —
Softmax, Gaussian, Neural Networks

* Monte Carlo Policy Gradient

* Update parameters by stochastic gradient ascent,

use policy gradient theorem
* Use return G; as an unbiased estimate of

qﬂ:g (St’ At)
« A® = aVylog my(S,, A,) G,
* MC policy gradient has high variance

e Use actor-critic methods to reduce variance

/ REINFORCE

* Initialize policy parameters 0 arbitrarily
* Loop
* Sample episode following policy g

* Fort=1toT —1
* G, =R, +VR41 +V°Rey2 +-
)/T_lRT
« 0«0+ aVglog my(S, A;) G
* Return 0

\

(S(); Ao; er Sl' Al! RZ) noog ST—ll AT—lr RT)

~

/

David L. Inouye, Purdue Uni

24

rersity

(7.B) Advanced Policy Gradient Algorithms — Trust
Region Methods (TRPO/PPO)

* General policy gradient algorithms try to solve the optimization problem
max /() = Be-ro[) ViR:)
t=0

* Use stochastic gradient ascent on policy parameters 0 using policy gradient g

*9= VO](T[O) — IET~1I9 [Z?;O Vt Velog g (Atlst)Ang (St» At)]
* Advantage function A, (s, @) = qg,(s, @) — v, (S), relative advantage of an action i.e. how much
better to take action @ in state § over randomly selaecting any other action and following g after

* However, its sample efficiency is poor as it searches in parameter space instead of policy
space. Also, the method is dependent on step size.
* Trust Region Methods — Proximal Policy Optimization(PPO)
* Define L;(n') = J(n') —J(m) (m" = new policy, T = old policy), improvement over old policy
* Update 0 incrementally, approximately penalize policies from changing too much between steps
* Adaptive KL Penalty: 0,,,; = argmax Lg (8) — S KL(0]|0y), By is the penalty coefficient

0
* Clipped Objective: 0., = argmax Lg,'"(8) where

0 —_ ~
Lgilp(g) = Eromy [ZLO[min(rt(B)Ank (St Ap), clip(1:(0),1 — €, 1 + €)Ar, (St, AD)]]
1.(0) = me(A4,|S,)/ Ttgk(At|St), € is a hyperparameter

Categorizing RI. Algorithms
RL Algorithms J
¢ : | !
Model Free Model based
(Monte Carlo /Temporal Difference))
| v Y | v N
; . . | ! model
On-Polic [Off-Polic radient Free | Gradient Base . , na- |
v y Gradient F (Grad d Polhcy/ Value Dyna-Q
) L teration) . 3
4’[SARSA] ': Q-Learning] » REINFORCE AlphaZero/ | World models |
__AlphaGo J | 1A |
{ DQN | | TRPO/PPO —
¢ I < ! , MBMF
| c51 [DDON | | QRDQN][DDPG _ACKIR MEBVE

Jr—‘—#

D3 || sac | | A2c/A5C |

26

David L. Inouye, Purdue University

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
L

Explain reinforcement

l=aming to a 6 year old.

1
Y

@&

V4

W give treats and

punishmants to teach..

Example copied verbatim from https://openai.com/blog/chatgpt.

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

Fl
.

Explain reinforcement

l=arning to a & year old,

I el ament Enplain researtis

ey [

Step 3

RIL. Application: Reinforcement ILearning using
Human Feedback - Finetuning ChatGPT

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

~A

Wirite & story
about otters,

David L. Inouye, Purdue University

Summary of RLL Algorithms

* Agent attempts to find optimal policies with highest returns via. environment
interaction
* Planning/Prediction evaluates a given policy and Learning/Control finds the optimal policy
* Policy Iteration for control involves value function estimation and policy improvement steps

* Model-Free learning does not require model of the environment (MDP)
* Monte Carlo (MC) estimates the future returns by sampling returns via. environment interaction
* Temporal Difference (TD) estimates the future returns in a more online manner

* SARSA (On-policy) and Q-Learning (off-policy) uses MC/TD for model-free control
* Model-Based learning like Dyna-Q estimates the model of the environment (MDP)

* The state-value, action-value functions and policies can be approximated for
large MDPs using neural networks or other parametric function approximators

* Policy gradient methods directly find optimal policies using gradient descent

* In practice, RL algorithms can be used 1n various applications like stock trading, self-
driving cars and even systems like ChatGPT

References

* Based on the excellent RIL book by Sutton and Barto
* http://incompleteideas.net/book/the-book-2nd.html

e Some content borrowed from David Silver’s Lecture Notes
* https://www.davidsilver.uk/teaching/

* Additional help from Stanford CS234 course by Emma Brunskill
* https://web.stanford.edu/class/cs234/modules.html
* OpenAl Blogs

* https://openai.com/blog/chatgpt

* https://spinningup.openai.com/en/latest/index.html

29

David L. Inouye, Purdue University

http://incompleteideas.net/book/the-book-2nd.html
https://www.davidsilver.uk/teaching/
https://web.stanford.edu/class/cs234/modules.html
https://openai.com/blog/chatgpt
https://spinningup.openai.com/en/latest/index.html

	Default Section
	Slide 1: Reinforcement Learning
	Slide 2: Reinforcement Learning Algorithms Overview
	Slide 3: Categorizing RL Algorithms
	Slide 4: Categorizing RL Algorithms
	Slide 5: (1.A) Policy Evaluation – How good is your policy?
	Slide 6: (1.B.1) Policy Iteration – How to improve a policy? How to find the optimal policy ?
	Slide 7: (1.B.2) Value Iteration – Estimate optimal value function
	Slide 8: Categorizing RL Algorithms
	Slide 9: (2.A.1) Monte Carlo Policy Evaluation - Estimate value function for unknown MDPs (Model Free Prediction)
	Slide 10: (2.A.2) Monte Carlo Policy Evaluation - Estimate value function for unknown MDPs (Model Free Prediction)
	Slide 11: (2.B) Monte Carlo Policy Optimization - Estimate optimal value function for unknown MDPs (Model Free Control)
	Slide 12: (3.A) Temporal Difference(TD) Learning - Estimate value function for unknown MDPs (Model Free Prediction)
	Slide 13: (3.B.1) Model-Free Control with TD Methods – SARSA (On-Policy TD Learning)
	Slide 14: On-policy versus Off-Policy Learning & Control
	Slide 15: (3.B.2) Model-Free Control with TD Methods – Q Learning (Off-Policy TD Learning)
	Slide 16: (4.A) Value Function Approximation – Scaling up RL methods
	Slide 17: (4.A.1) Linear Value Function Approx. by Gradient Descent
	Slide 18: (4.A.1) Incremental Prediction/Control Algorithm – MC/TD with Function Approx.
	Slide 19: Categorizing RL Algorithms
	Slide 20: Model-Based Reinforcement Learning – Integrating Learning and Planning
	Slide 21: (5.A/B) Integrated Architectures – Dyna (Dyna-Q Algorithm)
	Slide 22: Categorizing RL Algorithms
	Slide 23: Policy-Based RL – Policy Gradient Methods
	Slide 24: (6.B) Monte Carlo Policy Gradient – REINFORCE
	Slide 25: (7.B) Advanced Policy Gradient Algorithms – Trust Region Methods (TRPO/PPO)
	Slide 26: Categorizing RL Algorithms
	Slide 27: RL Application: Reinforcement Learning using Human Feedback - Finetuning ChatGPT
	Slide 28: Summary of RL Algorithms
	Slide 29: References

