
Assignment 3: Geometric Intelligence (SVD & PCA)

1 Instructions

In this assignment, you will move beyond simply calculating answers and focus on geometric intuition and exploratory
analysis. You will deconstruct matrices to see them as geometric operators (SVD) and apply those insights to uncover
structure in high-dimensional datasets (PCA).

Expectations on AI Use: Unlike Assignment 2, where you implemented algorithms from scratch, here you are encour-
aged to use standard libraries (numpy, matplotlib, sklearn). You may use LLMs to generate the boilerplate code for
plotting and data loading. However, the grading focus shifts entirely to your ability to interpret the results, construct
specific geometric scenarios, and critique the limitations of linear methods.

1.1 Submission Requirements

You must submit two components to Gradescope:

1. The Report: A plaintext Markdown document which you will paste directly into a Gradescope submission text
box. This is the primary artifact for grading. IMPORTANT: This document must be text-only. Do not attempt
to embed images. You will describe your visual findings using precise language and numerical data.

• Character Limit: 7,500 characters (roughly 1.5 - 2 pages of single-spaced text).

2. Supplemental Material: You must upload your .ipynb notebook containing all code, visualizations, and raw
experimental results.
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2 Part 1: Implementation (The Notebook)

You will author a Jupyter Notebook containing two primary experiments.

2.1 Experiment 1: The Anatomy of a Linear Transformation (SVD)

We learned in class that every matrix 𝐴 can be decomposed into a sequence of three geometric operations: 𝐴 = 𝑈Σ𝑉 𝑇 .

Input 𝑥
Rotate/Reflect (𝑉 𝑇 )
−−−−−−−−−−−−→ Aligned Space

Scale/Collapse (Σ)
−−−−−−−−−−−→ Scaled Space

Rotate/Reflect (𝑈)
−−−−−−−−−−−→ Output 𝑏

2.1.1 Task 1.1: The visualize_svd Function

Implement a function visualize_svd(A) that takes a 2 × 2 matrix 𝐴 and visualizes its effect on a unit square defined
by a grid of points (or a distinctive shape like the letter ‘F’).

Your function must generate a single figure with 4 subplots showing the progression of the data: 1. Original Data:
The initial unit square/shape. 2. Step 1 (𝑉 𝑇 ): The data after multiplying by 𝑉 𝑇 . (Rotation/Reflection) 3. Step 2
(Σ𝑉 𝑇 ): The data from Step 1 after multiplying by Σ. (Scaling/Stretching) 4. Step 3 (𝑈Σ𝑉 𝑇 ): The data from Step 2
after multiplying by 𝑈 . (Final Rotation/Reflection)

Note: Use numpy.linalg.svd to get the components.

2.1.2 Task 1.2: The “Matrix Architect”

Using your visualization tool, you must manually construct (by defining specific 𝑈 , Σ, and 𝑉 𝑇 matrices) and visualize
matrices that perform the following specific geometric tasks. You cannot just pick random numbers; you must design the
components to achieve the effect.

1. The Collapse: A matrix that projects 2D space onto a 1D line at a 45∘ angle.
2. The Invertible Shear: A matrix that shears the unit square (looking like a rhombus) but maintains full rank (no

zero singular values).
3. The Mirror: A pure reflection across the Y-axis (no scaling, no rotation).
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2.2 Experiment 2: Exploratory Data Analysis via PCA

You will use sklearn.decomposition.PCA to explore the “latent space” of real-world datasets. You must interpret the
components not just as abstract vectors, but as “directions of maximum variance.”

2.2.1 Task 2.1: Eigenfaces (The LFW Dataset)

Load the Labeled Faces in the Wild (LFW) dataset using sklearn.datasets.fetch_lfw_people (use min_faces_per_person=70
to keep it small).

1. Compute PCA: Fit PCA to the face images.
2. Visualize Components: Plot the “Mean Face” and the top 5 “Eigenfaces” (principal components reshaped back

into images).
3. Reconstruction: Show an original face and its reconstruction using 𝑘 = {10, 50, 100, 200} components.
4. Error Analysis: Compute the Mean Squared Error (MSE) for each reconstruction level.

2.2.2 Task 2.2: The Failure of Linearity (Swiss Roll)

PCA assumes data lies on a linear subspace (a flat sheet). Test this assumption on a non-linear manifold.

1. Generate Data: Use sklearn.datasets.make_swiss_roll to generate 1000 points.
2. Apply PCA: Project the 3D data down to 2D using PCA.
3. Visualize: Plot the 2D projection, coloring the points by their position on the roll (the univariate label).
4. Analyze: Does the 2D projection successfully “unroll” the Swiss Roll? Why or why not?

2.2.3 Task 2.3: Sensitivity to Outliers

PCA minimizes squared error (𝐿2 norm), which is notoriously sensitive to outliers.

1. Generate Data: Create a simple 2D dataset with a strong linear correlation (e.g., 𝑦 = 𝑥 + noise).
2. Corrupt Data: Add one massive outlier point far away from the main cluster.
3. Compare: Fit PCA to the “Clean” data and the “Corrupted” data.
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4. Quantify: Compute the angle (in degrees) between the first principal component of the clean data vs. the corrupted
data.

3 Part 2: Content Requirements (The Report)

Your report must be organized into exactly five sections with Markdown headers. Do not include images. Use text,
tables, and specific numbers to describe your findings.

3.1 Section 1: Executive Summary & Key Insight

• One-Sentence Takeaway: A single sentence summarizing the most important geometric intuition you developed
regarding how matrices manipulate data.

• Summary Paragraph: Briefly describe the datasets you analyzed and the key distinction you observed between
linear (PCA) and non-linear data structures.

3.2 Section 2: The Geometry of SVD

• Descriptive Analysis: Describe the transformation of the unit square in Task 1.1 using precise geometric language.
(e.g., “The square was first rotated 30 degrees clockwise, then stretched along the x-axis by a factor of 2…”)

• Matrix Architecture: For the “Collapse” task (Task 1.2), provide the exact numerical matrices you constructed
for 𝑈 , Σ, and 𝑉 𝑇 . Explain why these values achieved the target effect (e.g., “I set Σ2,2 = 0 to collapse the second
dimension, and set 𝑈 to…”).

– Format Idea: Use a Markdown table or LaTeX matrix notation to clearly present your constructed matrices.
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3.3 Section 3: PCA & Interpretability (Eigenfaces)

• Interpreting “Ghost” Faces: Describe the visual features captured by the first 2 Principal Components. Do NOT
paste the images. Instead, use descriptive language (e.g., “PC1 appears to capture the lighting direction, showing a
gradient from left to right,” or “PC2 captures the difference between smiling and neutral expressions”).

• Reconstruction Analysis: Report the Mean Squared Error (MSE) values for 𝑘 = {10, 50, 100, 200}. Discuss
the trade-off: At what 𝑘 did the face become recognizable as a specific person? At what 𝑘 were fine details (like
glasses or teeth) resolved?

3.4 Section 4: The Limitations of Linearity

• Swiss Roll Failure: Describe the 2D scatter plot of the Swiss Roll projection. Did the colors (representing the
manifold structure) separate cleanly, or did they overlap? Explain geometrically why PCA failed here (reference
“Euclidean distance” vs “Geodesic distance”).

• Outlier Sensitivity: Report the angle of deviation (in degrees) caused by the single outlier in Task 2.3. Explain
why the 𝐿2 norm objective function forces the principal component to tilt towards the outlier.

3.5 Section 5: Reflection

• Geometric “Aha!” Moment: Describe a specific moment where the code output contradicted your mental model
of linear algebra.

• LLM Usage: How did you use LLMs for this assignment? Did the LLM struggle with the “Matrix Architect” task
(constructing matrices for specific geometric effects)?

4 Grading Rubric

Each of the five sections is weighted equally (20% each).
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Criterion Excellent (5) Good (4) Satisfactory (3) Okay (2) Poor (1)
Section 1:
Executive
Summary

Takeaway is profound
and geometrically
grounded. Summary
clearly contrasts
linear vs non-linear
behaviors.

Takeaway is
clear. Summary
covers the main
tasks.

Takeaway is
generic.
Summary is
present but
vague.

Summary
misses key
elements of the
analysis.

Missing.

Section 2:
SVD
Geometry

“Collapse” matrices
are correct and
explanation
demonstrates deep
understanding of how
Σ controls rank and
𝑈 controls
orientation.

Explanation
identifies the
correct
components but
explanation is
slightly
mechanical.

Matrices are
provided, but
explanation of
the construction
is weak or relies
on
trial-and-error.

Matrices are
incorrect or
missing
explanation.

Missing.

Section 3:
Eigenfaces

Insightful descriptive
analysis of PC
features (lighting vs
structure).
Reconstruction
discussion is
grounded in specific
MSE values.

Good
description and
reasonable
discussion of
features.

MSE values
present.
Discussion
states the
obvious (e.g.,
“error went
down”).

Missing MSE
values or
descriptions are
too vague.

Missing.

Section 4:
Limitations

Clearly articulates
why PCA fails on
manifolds and why
outlier sensitivity
occurs, referencing
specific results (angle
change).

Correctly
identifies the
failure modes
with good
evidence.

Describes the
failure but
struggles to
explain the
“why”.

Interpretation
is incorrect
(e.g., claiming
PCA worked on
the Swiss Roll).

Missing.
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Criterion Excellent (5) Good (4) Satisfactory (3) Okay (2) Poor (1)
Section 5:
Reflection

Honest, specific
reflection connecting
code to geometric
theory. Critically
evaluates LLM
performance on
geometric reasoning.

Thoughtful
reflection on the
learning
process.

Generic
reflection (e.g.,
“I learned about
PCA”).

Minimal effort. Missing.
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