
Assignment 2: Numerical Linear Algebra Algorithms in
NumPy

1 Instructions

In this assignment, you will implement three fundamental algorithms in numerical linear algebra using only basic NumPy
operations (matrix-vector products, matrix-matrix products, norms, outer products, and slicing). You will then compare
your outputs to NumPy’s optimized “gold standard” routines to explore accuracy, correctness, and performance.

There are two components to this assignment:

1. Implementation (The Notebook): You will write code in a Jupyter Notebook to implement the algorithms and
run experiments.

2. Reporting (The Report): You will summarize your findings, key code, and reflections in a structured Markdown
report.

1.1 Submission Requirements

You must submit two components to Gradescope:

1. The Report: A plaintext Markdown document which you will paste directly into a Gradescope submission text
box. This contains the 5 sections described in Part 2 and is the primary artifact for grading.

• Character Limit: 7,500 characters (roughly 1.5 - 2 pages of single-spaced text).

1



2. Supplemental Material: You must upload the raw materials used to create your report, specifically your .ipynb
notebook containing all code and raw experimental results.

• Upload Method: Please upload this file directly to the Gradescope assignment.

• Note: This supplemental material is not graded for content but is required for verification.

2 Part 1: Implementation (The Notebook)

You will author a Jupyter Notebook (.ipynb) containing implementations of the three algorithms described below, along
with validation and timing experiments.

2.1 Data Generation

For all algorithms, you must test your code on symmetric matrices (𝐴 = 𝐴⊤). You may generate these randomly (e.g.,
𝐴 = 𝐵𝐵⊤). Ensure your test cases have at least 𝑑 = 10 dimensions.

2.2 A Note on Indexing

Important: The pseudocode provided below uses standard mathematical 1-based indexing (rows and columns 1 … 𝑚).
Python and NumPy use 0-based indexing (0 … 𝑚 − 1).

• Adjustment: When translating math to code, shift indices down by 1. For example, loop variable 𝑘 (1 to 𝑚)
becomes k (0 to m-1) or i (0 to n-1).

• Slicing: Remember that Python slices start:stop include start but exclude stop.

2



2.3 Algorithm 1: Power Iteration

Power Iteration is an iterative method used to find a matrix’s dominant eigenvector, which corresponds to the eigenvalue
with the largest absolute value. The process involves repeated matrix-vector multiplication and normalization to ensure
the result remains a unit vector. When applied to a sample covariance matrix, it identifies the first principal component,
representing the direction of maximum variance in a dataset. Thus, making it a building block for understanding more
complex dimensionality reduction techniques like PCA(Principal Component Analysis).

See also: Wikipedia - Power Iteration

Pseudocode:

Note: The initial vector 𝑣0 is usually generated randomly (e.g., using a standard normal distribution for each entry).

Input: Symmetric matrix 𝐴 ∈ ℝ𝑑×𝑑, initial nonzero 𝑣0 ∈ ℝ𝑑, iterations 𝑇 , tolerance 𝜀 > 0.
Output: Unit vector ̂𝑣 approximating the dominant eigenvector and eigenvalue 𝜆̂.

1. 𝑣 ← 𝑣0
‖𝑣0‖2

2. for 𝑡 = 1 to 𝑇 do
3. 𝑤 ← 𝐴𝑣
4. 𝑣new ← 𝑤

‖𝑤‖2
5. if ‖𝑣new − 𝑣‖2 < 𝜀 then break
6. 𝑣 ← 𝑣new

7. end for
8. ̂𝑣 ← 𝑣
9. 𝜆̂ ← ̂𝑣⊤𝐴 ̂𝑣
10. return ( ̂𝑣, 𝜆̂)

3

https://en.wikipedia.org/wiki/Power_iteration


2.4 Algorithm 2: QR Decomposition via Householder Reflectors

QR decomposition is a matrix factorization that breaks a matrix 𝐴 into an orthogonal matrix 𝑄 and an upper triangular
matrix 𝑅. You can think of it as the matrix-level version of the Gram-Schmidt process from MA 265 (Linear Algebra),
which takes a set of vectors and makes them orthonormal. While Gram-Schmidt works by “subtraction”, the House-
holder method used in this assignment works by “reflection,” using linear transformations to flip vectors onto the axes.
This approach is far more numerically stable and ensures that 𝑄 remains truly orthogonal and 𝑅 remains accurately
triangular.

See also: Wikipedia - QR Decomposition

Pseudocode:

4

https://en.wikipedia.org/wiki/QR_decomposition


Input: Matrix 𝐴 ∈ ℝ𝑚×𝑛.
Output: Orthogonal 𝑄 ∈ ℝ𝑚×𝑚 and upper-triangular 𝑅 ∈ ℝ𝑚×𝑛 such that 𝐴 = 𝑄𝑅.

1. 𝑅 ← 𝐴
2. 𝑄 ← 𝐼𝑚
3. for 𝑘 = 1 to min(𝑚, 𝑛) do
4. 𝑥 ← 𝑅𝑘∶𝑚, 𝑘
5. 𝛼 ← ‖𝑥‖2
6. if 𝛼 = 0 then continue
7. 𝑒1 ← [1, 0, 0, … , 0]⊤

8. 𝑠 ← {1, 𝑥1 ≥ 0
−1, 𝑥1 < 0

9. 𝑢 ← 𝑥 + 𝑠𝛼𝑒1

10. 𝑣 ← 𝑢
‖𝑢‖2

11. 𝐻 ← 𝐼 − 2𝑣𝑣⊤

12. 𝑅𝑘∶𝑚, 𝑘∶𝑛 ← 𝐻 𝑅𝑘∶𝑚, 𝑘∶𝑛
13. 𝑄∶, 𝑘∶𝑚 ← 𝑄∶, 𝑘∶𝑚 𝐻
14. end for
15. return (𝑄, 𝑅)

2.5 Algorithm 3: QR Algorithm for Eigendecomposition

The QR Algorithm is an iterative numerical method used to calculate all the eigenvalues and eigenvectors of a square
matrix. Unlike a simple factorization, it is a “looping” process that repeatedly uses the QR Decomposition as its engine.
Implement the QR algorithm (iterative) for a symmetric matrix (A), using your Householder QR from Section 3.

See also: Wikipedia - QR Algorithm

5

https://en.wikipedia.org/wiki/QR_algorithm


Pseudocode:

Input: Symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛, iterations 𝑇 , tolerance 𝜀 > 0.
Output: Orthogonal 𝑉 ∈ ℝ𝑛×𝑛 and diagonal Λ ∈ ℝ𝑛×𝑛 s.t. 𝐴 ≈ 𝑉 Λ𝑉 ⊤.

1. 𝐴curr ← 𝐴
2. 𝑉 ← 𝐼𝑛
3. for 𝑡 = 1 to 𝑇 do
4. (𝑄, 𝑅) ← HouseholderQR(𝐴curr)
5. 𝐴new ← 𝑅𝑄
6. 𝑉 ← 𝑉 𝑄
7. off ← 𝐴new − diag(diag(𝐴new))
8. if ‖off‖𝐹 ≤ 𝜀‖𝐴new‖𝐹 then break
9. 𝐴curr ← 𝐴new

10. end for
11. Λ ← diag(diag(𝐴curr))
12. return (𝑉 , Λ)

2.6 Evaluation & Complexity Experiments

In your notebook, you must perform the following for each algorithm.

2.6.1 1. Required Metrics for Validation

You must compute and report the following error metrics in your report to justify the correctness of your implementa-
tions.

• For Algorithm 1 (Power Iteration): Compute the ground truth eigenvalues using numpy.linalg.eigh(A). Let
𝜆𝐺𝑇 be the eigenvalue with the largest absolute value. Report the relative difference:

6



Error = |𝜆̂ − 𝜆𝐺𝑇 |
|𝜆𝐺𝑇 |

• For Algorithm 2 (QR Decomposition): To verify your decomposition, compute the relative squared Frobe-
nius norm of the reconstruction error compared to the original matrix 𝐴:

Error = ‖𝐴 − 𝑄̂𝑅̂‖2
𝐹

‖𝐴‖2
𝐹

• For Algorithm 3 (QR Algorithm): Compute the ground truth eigenvalues 𝜆𝐺𝑇 using numpy.linalg.eigh(A)
(note that NumPy sorts these ascendingly). Take the diagonal of your result matrix, 𝜆̂ = diag(Λ). Sort 𝜆̂ in
ascending order. Report the relative L2 norm difference between the sorted eigenvalue vectors:

Error = ‖sort(𝜆̂) − 𝜆𝐺𝑇 ‖2
‖𝜆𝐺𝑇 ‖2

2.6.2 2. Timing Analysis

Measure the wall-clock time (actual seconds) required to run your implementation for matrix sizes 𝑛 =
10, 100, and 1000.

3 Part 2: Content Requirements (The Report)

Your report must be organized into exactly five sections with Markdown headers (e.g., # Section 1: ...). This text
is what you will paste into Gradescope.

7



3.1 Section 1: Executive Summary & Key Insight

• One Sentence Takeaway: Start with a single sentence that captures the most surprising, confusing, or impactful
insight you gained.

• Summary Paragraph: Write a short paragraph (3–5 sentences) summarizing what you implemented, how you
validated against NumPy (citing the specific metrics defined above), and what you learned from the study.

3.2 Sections 2, 3, and 4: The Algorithms

For each algorithm (Power Iteration, Householder QR, QR Algorithm), provide a dedicated section containing:

1. Core Code: Paste 2–4 lines of your actual Python code that represent the “most important” update or calculation.

2. Explanation: Briefly explain (1-3 sentences) how these specific lines map to the mathematical pseudocode.

3. Gold Standard Comparison: Explicitly report the relative error metrics defined in the instructions above.
(e.g., “The relative L2 difference for the eigenvalues was 4.5 × 10−15”).

3.3 Section 5: Empirical Complexity & Reflection

This section must include both:

A) Empirical Complexity Run timing experiments for different matrix sizes 𝑛 = 10, 100, 1000 for all three algorithms.
Include:

• A Markdown table showing the wall-clock execution times (in seconds).

• A short discussion comparing observed scaling to expectations. What behavior did you observe when you increased
𝑛 by a factor of 10 in your experiments?

B) Reflection Write a short reflection (at least one paragraph) addressing:

• What was hardest to debug and how you verified correctness.

• Any issues you observed, and the difference between the “gold standard” and your implementation.

8



• What you learned about algorithm design vs practical performance.

4 Grading Rubric

Each of the five sections will be weighted equally (20% each).

Criterion Excellent (5) Good (4)
Satisfactory
(3) Okay (2) Poor (1)

Section 1:
Insight &
Summary

Takeaway is specific,
memorable, and
technically grounded.
Summary perfectly
captures the report’s
core results.

Takeaway is
clear and
relevant.
Summary
provides a solid
overview of
validation and
results.

Takeaway is
somewhat
generic.
Summary exists
but is vague
regarding
metrics or
methods.

Takeaway is
missing or
summary is
disconnected
from the work.

Section is
missing or
unintelligible.

Section 2:
Power
Iteration

Key lines are well
chosen. Comparison
uses the required
relative difference
metric and is precise.

Code selection
is relevant.
Comparison is
present but
might lack
quantitative
precision.

Code lines are
present but
weak/loose.
Comparison is
vague (e.g., “it
looked close”)
or uses wrong
metric.

Key lines or
comparisons are
miss-
ing/incorrect.

Section is
missing or fails
to implement
the algorithm.

Section 3:
Householder
QR

Key lines capture
reflector
formation/updates.
Comparison uses the
required relative
squared Frobenius
norm.

Code selection
is correct.
Validation is
reasonable but
discussion is
minor.

Code selection
is weak or
confusing.
Validation
metrics are
incomplete or
incorrect.

Comparison or
code evidence is
largely incorrect
or missing.

Section is
missing or fails
to implement
the algorithm.

9



Criterion Excellent (5) Good (4)
Satisfactory
(3) Okay (2) Poor (1)

Section 4:
QR
Algorithm

Core lines show QR
step and similarity
update. Comparison
uses the required
relative L2 norm
difference.

Code selection
is appropriate.
Comparisons
are present with
minor issues in
discussion.

Code or
comparisons are
weak/confusing.
Connection to
Householder
QR is unclear.

Implementation
is incorrect or
evidence is
missing.

Section is
missing or fails
to implement
the algorithm.

Section 5:
Complexity &
Reflection

Timing experiments
cover all sizes
(10, 100, 1000) with a
clear table.
Reflection is deep,
specific, and honest
about debugging.

Timing results
are complete.
Reflection is
thoughtful but
may lack
specific
debugging
details.

Timing results
are present but
noisy/incomplete.
Reflection is
generic or
dutiful.

Major sizes
missing in
timing.
Reflection is
superficial or
ignores the
process.

Section is
missing.

10


	Instructions
	Submission Requirements

	Part 1: Implementation (The Notebook)
	Data Generation
	A Note on Indexing
	Algorithm 1: Power Iteration
	Algorithm 2: QR Decomposition via Householder Reflectors
	Algorithm 3: QR Algorithm for Eigendecomposition
	Evaluation & Complexity Experiments
	1. Required Metrics for Validation
	2. Timing Analysis


	Part 2: Content Requirements (The Report)
	Section 1: Executive Summary & Key Insight
	Sections 2, 3, and 4: The Algorithms
	Section 5: Empirical Complexity & Reflection

	Grading Rubric

