

Intro. to Artificial Intelligence

ECE 47300, Spring 2026

Website: <https://www.davidinouye.com/course/ece47300-spring-2026/>

David I. Inouye

The Big Questions

- What is Artificial Intelligence (AI)? (Past & Present)
- What are the limits of AI? (Present & Near-Term)
- What is the future of AI? (Long-Term & Existential)

What is Artificial Intelligence?

(Past & Present)

What Is Artificial Intelligence?

- **Merriam-Webster Dictionary**

a branch of computer science dealing with the simulation of intelligent behavior in computers

- **Oxford Dictionary**

the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

AI as a Moving Target

In reality, the definition of AI shifts as technology advances. What was once AI is now just software.

- **Yesterday's AI (1st Wave - Handcrafted Knowledge):**

- Examples: Chess solvers, TurboTax
- **Good at:** Logical reasoning from rules
- **Bad at:** Perceiving and learning from data

- **Today's AI (2nd Wave - Statistical Learning):**

- Examples: Facial recognition, personalized recommendations
- **Good at:** Perceiving patterns and learning from data
- **Bad at:** Reasoning and robustness

AI is anything that humans can do that computers cannot *yet* do.

Excellent DARPA video (16 min) on AI (content above based on this): <https://www.youtube.com/watch?v=-001G3tSYpU>

A Third Wave: The Age of LLMs

- Today's AI frontier is increasingly defined by **Large Language Models (LLM)**—e.g., **ChatGPT, Gemini, Claude, Grok.**
- This “3rd Wave” builds on the foundation of the second wave.
 - The key difference is **unprecedented scale** in data and computation.
 - Because LLMs are trained on billions of human-written sentences, **they reflect human intelligence**—they do not create intelligence out of nothing.
- **Course Goal:** To teach the fundamentals of the second wave that when scaled up led to the third wave of modern advances.

What are the limits of AI?

(Present & Near-Term)

Pairs Interaction Format

- Find a nearby buddy (ideally pairs but okay with a group of 3).
- **Format of Interaction:**
 - The first person answers the question.
 - When I say “**Switch**,” the second person answers.
 - When I say “**Stop**,” return your attention to the front.
- **Rule:** If I ask for responses, you can only share what your **partner** said.
- Listen well—your partner’s answer might become your own voice!
- **First questions:**
 - **What do you think AI will be able to do in the next 5-10 years?**
 - **What do you think AI will NOT be able to do in the next 5-10 years?**

My Hypothesis 1: The Value Judgement Limit

A fundamental limit of AI is its inability to make genuine **value judgements**.

- Value judgements are tied to **morality, beliefs, and relationships**.
- An AI can be given an objective (e.g., “maximize profit”), and it may perform the task with superhuman skill.
- However, it cannot independently determine if that objective is **right, just, or meaningful**. That requires a value system it doesn’t possess.

My Hypothesis 2: The Data Scarcity Limit

- **The Analogy:** Human-generated data is like **raw oil**.
 - It is a finite, fixed resource that was previously untapped.
 - We are currently in a “gold rush” to extract value from this existing reserve.
- **The Refinery Problem:**
 - AI acts as the **refinery**—it turns raw data into useful intelligence.
 - But a refinery cannot produce more oil; it can only process what exists.
- **The Supply Mismatch:**
 - **Consumption is Exponential:** AI models consume data at a massive scale.
 - **Production is Linear:** Humans generate high-quality, “real” data at a slow, biological pace.
 - *Conclusion:* We may hit “Peak Data”—where the resource required to fuel the method runs dry.

My Hypothesis 3: The Data Efficiency Problem

Current AI relies on massive scale rather than elegant efficiency.

- **The Data Chasm:**

- A human child acquires deep understanding from relatively few examples (millions of words).
- LLMs require **trillions** of words (10,000 times more) to achieve competence.
- *We have not cracked the code of efficient learning; we have simply scaled inefficient learning schemes.*

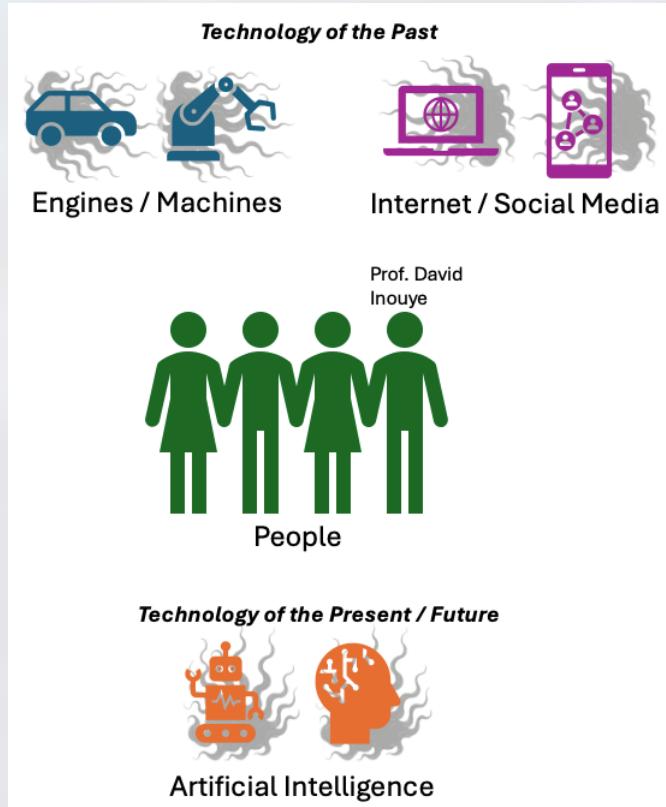
- **The Flight Analogy:**

- **Airplanes:** Fast and powerful, but crude, rigid, and energy-hungry.
- **Birds:** Elegant, highly maneuverable, and energy-efficient.
- **The Reality:** We have scaled up “crude” mechanics (like the airplane), but we are nowhere near the elegance of the human intelligence.

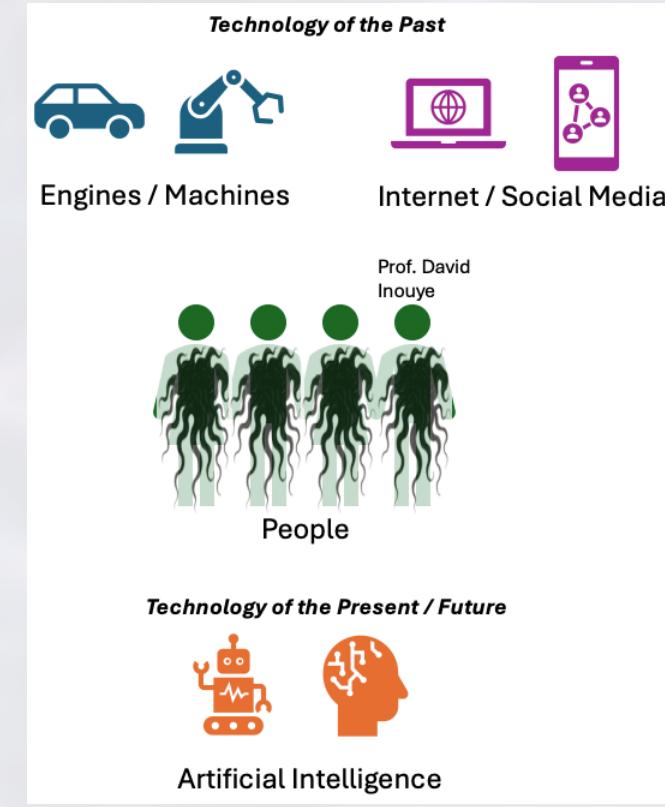
What is the future of AI?

(Long-Term & Existential)

Discussion: Will AI take over or destroy the human society?


Let's discuss with your partner.

- Will AI take over the world?
- What are the biggest dangers of AI?



Misplacing the Threat

Questions like “Will AI destroy the world?” often carry an implicit assumption.

The Common Fear: An external, superintelligent AI will emerge, and its goals will conflict with ours, leading to our demise.

Questioning the Assumption: This view supposes that evil resides *within the technology itself*, it's external.

My personal view: The key problem of evil resides not within technology but within people including myself!

My Hypothesis: The Real Danger - Evil Within

A good master gave each of his servants a sharp knife. One servant used it to carve furniture from wood he had gathered. He worked with care. The other servant used the knife to threaten his neighbor and steal furniture. When the master returns, will he judge the knife—or the ones who used it?

- AI is not the source of good or evil; it is a powerful **amplifier** of the intentions of its creators and users.
- The true existential threat is not the technology, but the **human heart** that wields it.
- The ultimate question is not what AI will do, but what **we** will choose to do with it.

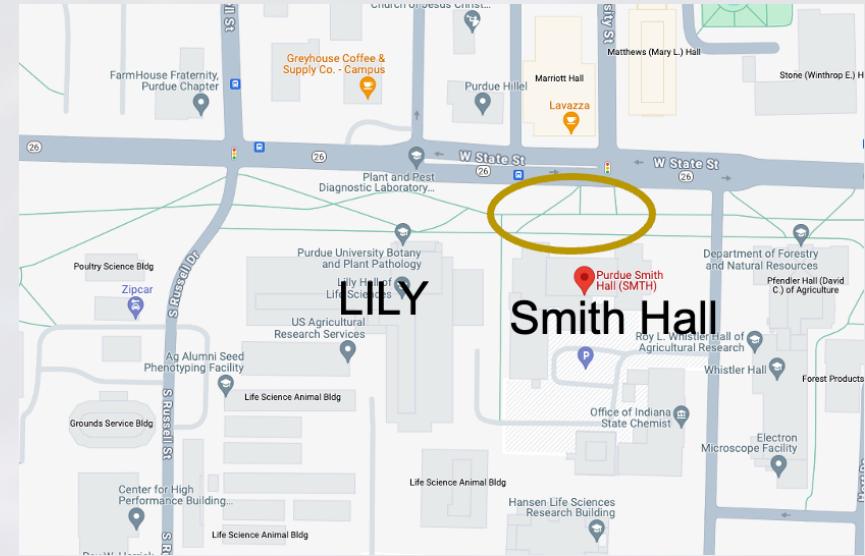
Logistics and Syllabus

Agenda

1. Announcements
 - Emergency preparedness
2. Syllabus
3. Logistics
4. (time-permitting) Defining AI

Emergency Preparedness

As we begin this semester, I want to take a few minutes and discuss emergency preparedness. Purdue University is a very safe campus and there is a low probability that a serious incident will occur here at Purdue. However, just as we receive a “safety briefing” each time we get on an aircraft, we want to emphasize our emergency procedures for evacuation and shelter-in-place incidents. Our preparedness will be critical IF an unexpected event occurs!


Emergency preparedness is your personal responsibility. Purdue University is actively preparing for natural disasters or human-caused incidents with the ultimate goal of maintaining a safe and secure campus.

Emergency Preparedness

Let's review the following procedure:

- For any emergency text or call 911.
- There are more than 300 Emergency Telephones (aka blue lights) throughout campus that connect directly to the Purdue Police Department (PUPD).
- If you feel threatened or need help, push the button and you will be connected right away.
- If we hear a fire alarm, we will immediately evacuate the building and proceed to the grassy area **north of Smith Hall**. Do not use the elevator.
- If we are notified of a Shelter in Place requirement for a **tornado warning, active shooter, or hazardous waste**, we will stop classroom or research activities and shelter in **this classroom**.

Map of Emergency Location

Syllabus!

All significant updates to the syllabus or course schedule will be posted on **Piazza**. See **course website** for syllabus and schedule.

Other Related Classes

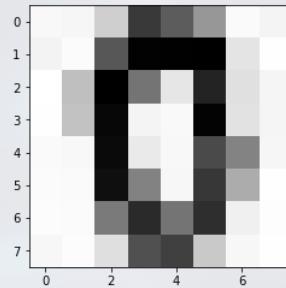
- ECE 57000: Artificial Intelligence (both semesters, project-based)
- ECE 50024: Machine Learning I (fall - online, spring - in-person) by Prof. Stanley Chan and Prof. Qi Quo
- ECE 59500: Data Mining by Prof. Jing Gao
- ECE 59500: Reinforcement Learning by Prof. Mahsa Ghasemi
- ECE 60146: Deep Learning (spring semester) by Prof. Kak and Prof. Bouman
- ECE 69500: Machine Learning in Bioinformatics and Healthcare by Prof. Joy Wang
- ECE 69500: Optimization in Deep Learning by Prof. Abolfazl Hashemi

Continued Introduction to AI

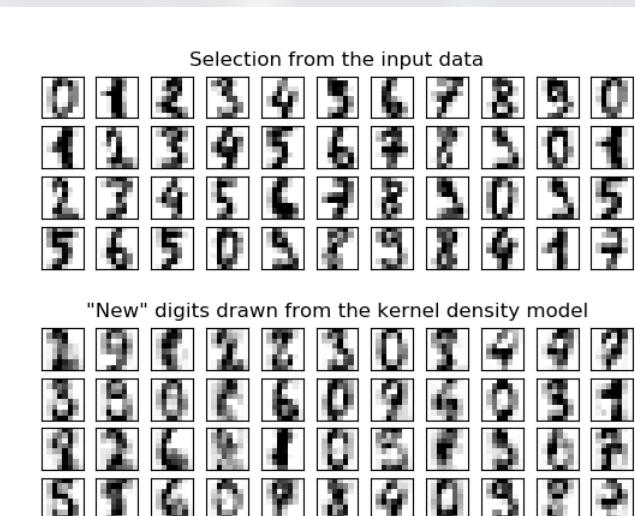
Goal: Developing Intuitions and Mental Models of AI

Good intuition and mental models of AI are critical for effective knowledge work in the age of LLMs.

- **The New Skillset:** Knowledge workers must be able to make quick **value judgements** and rapidly assess the **value and limits** of AI tools.
- **Avoiding Extremes:**
 - Avoid **overhype** (the idea that AI can solve all problems).
 - Avoid **unfounded resistance** (e.g., overregulation because of a misunderstood existential threat).
- **Your Goal in this Class:**
 - Learn how to use AI to **enhance your learning and understanding**.
 - Avoid using it as a crutch that makes you think less or become complacent.


To build this model, it helps to see how AI “perceives” the world.

Computers Don't "Think" Like We Do (Matrix)


$5.49e - 04$	$7.15e - 04$	$5.60e - 03$	$1.35e - 02$	$9.42e - 03$	$1.65e - 03$	$4.38e - 04$	$8.92e - 04$
$9.64e - 04$	$3.83e - 04$	$1.38e - 02$	$1.55e - 02$	$1.06e - 02$	$1.59e - 02$	$5.07e - 03$	$8.71e - 05$
$2.02e - 05$	$3.83e - 03$	$1.58e - 02$	$2.87e - 03$	$9.79e - 04$	$1.18e - 02$	$8.46e - 03$	$7.81e - 04$
$1.18e - 04$	$4.64e - 03$	$1.21e - 02$	$9.45e - 04$	$5.22e - 04$	$8.41e - 03$	$8.26e - 03$	$7.74e - 04$
$4.56e - 04$	$5.57e - 03$	$8.02e - 03$	$6.18e - 04$	$6.12e - 04$	$9.62e - 03$	$8.94e - 03$	$6.82e - 04$
$3.60e - 04$	$4.44e - 03$	$1.17e - 02$	$6.02e - 05$	$1.67e - 03$	$1.27e - 02$	$7.21e - 03$	$1.29e - 04$
$3.15e - 04$	$2.36e - 03$	$1.46e - 02$	$5.44e - 03$	$1.10e - 02$	$1.21e - 02$	$2.09e - 04$	$1.61e - 04$
$6.53e - 04$	$2.53e - 04$	$6.47e - 03$	$1.32e - 02$	$1.02e - 02$	$1.10e - 04$	$6.56e - 04$	$1.38e - 04$

A matrix of numbers as the computer "sees". Do you know what this matrix represents?

Computers Don't "Think" Like We Do (Image)

The same matrix of numbers displayed as an image.

Other examples from this dataset.

From [Explaining and Harnessing Adversarial Examples](#) by Goodfellow et al.

Nor Is Human Imitation Necessarily the Goal

Seeing how AI “perceives” the world helps us build better mental models. The goal isn’t to perfectly imitate human intelligence, but to understand the underlying principles of intelligence itself.

Imitation

Understanding + Engineering
(Underlying principles)

The Modern AI Landscape

The field of AI is broad and rapidly evolving. Key areas include:

Core Disciplines

- **Machine Learning:** Algorithms that learn patterns from data.
- **Deep Learning:** A subset of ML using neural networks with many layers.
- **Reinforcement Learning:** Agents that learn by interacting with an environment.

Major Application Areas

- **Natural Language Processing (NLP):** Understanding and generating human language.
- **Computer Vision:** Interpreting and understanding information from images and videos.

Key Emerging Topics

- **Generative AI:** Creating new content (e.g., LLMs, diffusion models).
- **AI Safety & Alignment:** Ensuring AI systems are safe and beneficial.
- **Responsible AI:** A focus on fairness, explainability, and ethics.
- **Embodied AI & Robotics:** AI agents that can interact with the physical world.

This Course Will Only Cover a Small Set of Topics

1. Introduction to artificial intelligence
2. Machine learning basics (e.g., optimization, gradient descent, regularization)
3. Deep learning basics (e.g., MLPs, CNNs)
4. Natural language processing basics (e.g., RNNs, Transformers)
5. Dimensionality reduction (e.g., PCA, VAE)
6. Generative models (e.g., VAE, Diffusion models)
7. Markov decision processes (e.g., basics of reinforcement learning)
8. Special topics

Questions?

