Invertible Normalizing Flows

ECE57000: Artificial Intelligence, Fall 2019

David I. Inouye

David I. Inouye 0]

Announcements

> Quiz moved to Friday
» Same content (i.e., up to DCGANSs, not today)

David I. Inouye 1

GAN Limitation:
Cannot compute density values

» Evaluation of GANs is challenging

> (Explicit density models could use test log likelihood)
> “l think this looks better than that”

0000 DO YO

/ V() /UL

A222 2L2 22

33 23333

¢ 4 Yyy ey

55 5858 5 s

b b b lC6

. 77 71777

> Inception scores SR gELEY:
> Train separate image classifier Groundiruth MNIST N POGAN (ours)

» See if passing fakes to classifier produces a high confidence prediction

» Cannot use for classification or outlier detection

David I. Inouye 2

GAN Limitation: Challenging to train because of
careful balance between discriminator and generator

1. Assumptions on possible D and G
1. Theory—All possible D and G
2. Reality — Only functions defined by a neural network

2. Assumptions on optimality
1. Theory — Both optimizations are solved perfectly
2. Reality — The inner maximization is only solved
approximately, and this interacts with outer minimization
3. Assumption on expectations
1. Theory — Expectations over true distribution

2. Reality — Empirical expectations over finite sample; for
images, much of the high-dimensional space does not have
samples

> GANSs can be very difficult/finicky to train

GAN Limitation: Cannot go from observed to
latent space, i.e. x — z not possible/easy

» Cannot manipulate an observed image in latent
space
> Cannot do the following, x > z, z' =2+ 3, z' - x'

> Rather, must start from fake image based on random
Z

All fake 4
images-> ==

smiling neutral neutral

smiling man
woman woman man 9

David I. Inouye

Normalizing flows use invertible deep models for
the generator which allow more capabilities

» Transforming between observed/input and latent
space is easy

»x =G (2)
»z=G"1(x)

» Simple sampling like GANs
» z ~ SimpleDistribution
»x = G(z) ~ Py(x), which is estimated distribution

> Exact density is computable via change of variables

» Standard maximum likelihood estimation can be used for
training

David I. Inouye 5

Highly realistic random samples from powerful
flow model (GLOW)

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye 6

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Interpolation between real images using GLOW

(l.* i‘,.:‘.“
o

rﬂt’ _&.{.'é b\
*vﬂ.;.‘ Wy, j;-,\’zrj
i N>) - =

Figure 5: Linear interpolation in latent space between real images.

AN

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye 7

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Transformations of real image along various
features

(e) Young (f) Male

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an
image along a vector corresponding to the attribute, with the middle image being the original image

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Back to maximum likelihood estimation (MLE):
How can we compute the likelihood
for normalizing flows?

> Suppose
» z ~ Uniform(]|0,1]),i.e.,p,(2) =1
(latent space is uniform)
> G(z) = 2z
>»Thus, x = G(z) = 2z.

» What is the density function of x, what is
Px(x)?

David I. Inouye 9

Change of variables formula gives p,. in terms of
the p, and the derivative of G 1

> Key idea: Must conserve density volume (so
that distribution sums to 1).

» pe(xX)]|dx| = p,(z)|dz|, this is like the

preservation of volume/area/mass.

> Intuition: We only have 1 unit of “dirt” to move

around.

» Rearrange above equation to get formula

dz

dx

px(x) —

pz(Z) —

dG1(x)

dx

p,(G71(x))

Derivation of change of variables
using CDF function (Increasing)

> Assume x = G(z), where G (z) is an increasing function
»E.(a) = Pr(x < a) = f_aoo p,(t)dt

»E.(a) =Pr(x<a)=Pr(G(z) <a)
= Pr(z < G‘l(a)) = FZ(G_l(a))

> Now take the derivative of both sides with respect to a

dFE,.(a)
——— =Dx(a)
dF,(G~ 1(a)) dE,(G™1(a)) (dG 1(a)>
da B d(G1(a)) da

dG-1
= p,(G~ 1(cz))((a)>

David I. Inouye

Derivation of change of variables
using CDF function (Decreasing)

> Assume x = G(z), where G (z) is an decreasing function
»E.(a) = Pr(x < a) = f_aoo p,(t)dt
»E.(a) =Pr(x<a)=Pr(G(z) <a)
= Pr(z > G‘l(a)) =1- FZ(G_l(a))
> Now take the derivative of both sides with respect to a
dF.(a)

da — px(a)
B dE,(G™1(a)) o dE,(G™1(a)) (dG‘l(a)>
da B d(G1(a)) da

dG-1
= —p,(G7*(a)) ((a)>

David I. Inouye

Inverse transform sampling
IS based on change of variables

» z ~ Uniform(]0,1])

» v ~ AnotherDistribution

»x = E;1(2), where E; 1 is the inverse CDF for v
> What is the distribution of x?

dF,
px(x) — pz(Fv(x)) (x)

dx

px(x) = (DIpy,(x)| = py(x)

Announcements

> Moved office hours from Thursday to Wed,
3:30pm—4:30pm

> Project submission instructions

» https://www.davidinouye.com/course/ece57000-
fall-2019/project/

> Quiz 6

> Transposed convolution

https://www.davidinouye.com/course/ece57000-fall-2019/project/

What about change of variables
in higher dimensions?

> Let’s again build a little intuition (see demo)

> Again, conservation of volume: Consider

infinitesimal expansion or shrinkage of volume
p(xy, xp)|dxydx,| = p(zy,2,)|dzydz,)|

» Given that Jacobian is all mixed derivatives we

get generalization for vector to vector invertible
functions:

px(x) = |det]g-1 (x)| p, (G (x))

What is the Jacobian again?
The best linear approximation at a point

» The Jacobian definition:

024 0z117 [0G 1(x), 0G1(x)1]
N 320 P T o
T =L,x)=: = i |= B B

O0za =~ 0za| [3G7'(X)a = 0G'(X)a

|01 6xd_ d0x4 E)xd

> The determinant measures the local expansion
or shrinkage around a point

David I. Inouye

One useful identity for determinant of Jacobian
of invertible function

» We can relate the Jacobian of a function to the
Jacobian of the inverse in a natural way

> Jo-1(x) =]G-1(G(Z)) =[Js@] ' =J;(2)71

» Using this we can come up with different ways
of writing the change of variables formula

pe(x) = |det) g1 ()], G-1<x>3
px(x) = |det]g (2)] " p, (G (x)
p(x) = |det o () piz)
pa(z) = |det]g <z>|px%
p,(2) = |det /g () |px(G(2))

David I. Inouye

The determinant Jacobian of compositions of
functions is the product of determinant Jacobians

> Suppose F(x) = F, (F1 (x))
> The Jacobian expands like the chain rule
Jr () = Jp,(FL0))JF, (%) = Jr,JF,

> |f we take the determinant of the Jacobian, then
it becomes a product of determinants

det/p = detJg, Jr, = (det]Fz)(det]Fl)

> This will be useful since each layer of our flows
will be invertible

Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for
each layer

> Simply optimize the maximize likelihood of model
FQ — G_l
arg mm — logl_[px(xl,)

arg HI}"}gn — Z_[log pz(FH (xi)) + logldet]Fe (xl)u

Fg

arg min — z long(Fg(xi))+210g‘det]F9(e)‘
! L |

l

How do we create these invertible layers?

> Consider arbitrary invertible transformation Fg
> How often would ‘det]F9| need to be computed?

> High computation costs

» Determinant costs roughly O(d?) even if Jacobian is
already computed!

> Would need to be computed every stochastic
gradient iteration

How do we create these invertible layers?
Independent transformation on each dimension

> 7y = Fy(x1)
> Zy; = Fy(xy)
> Z3 = F3(x3)
» What is the Jacobian?

dF
1(x1) 0 0
dxq
dF,(x
=l 0 @G
X2
0 dF3(x3)
dx; |

David I. Inouye

How do we create these invertible layers?
Autoregressive flows based on chain rule

» Forward - Density estimation (in parallel)
>z = F1(xq)
> Zp = Fy(xz|x1)
> z3 = F3(x3]xq, X5)
> Inverse — Sampling (conditioned on x so must be sequential)
> %, = Fy ' (zy)
> Xy = Fy 1 (z3]%1)
> x3 = F5 1 (z3]x1, %)
» What is the Jacobian and determinant?
> Product of diagonal! dh 0

dx1
dF, dF,

dF; dF; dF;
_dx1 d.X'z dX3-

David I. Inouye

How do we create these invertible layers?
Autoregressive flows based on chain rule

» Forward - Density estimation (sequential)
>z = F1(xq)
>z, = Fy(x3|21)
> z3 = F3(x3|24, 25)
> Inverse — Sampling (parallel)
> %, = Fy ' (zy)
> Xy = Fy 1 (23|21)
> x3 = F3 ' (23]21, 2)
» What is the Jacobian and determinant?
> Product of diagonal! i BY 0

dx1
dF, dF,

dF; dF; dF;
_dx1 d.X'z dX3-

David I. Inouye

Scale-and-shift simple form to invertible functions
(MAF https://arxiv.org/pdf/1705.07057.pdf)

» Forward - Density estimation (sequential)
> 7y = exp(ag)xs + Uy
> Zy = exp(az)xp + Ha, ap = folxq), Hz = g2(x1)
> z3 = exp(as)x3 + U3, az = fz(x1,x2), puz = g3(x1, x2)
» What is the Jacobian and determinant?

exp(aq) 0 0 7
dz,
Io=| oo exp(a,) 0
 dx dx, exp(a3)_

David I. Inouye

https://arxiv.org/pdf/1705.07057.pdf

What if we want parallel

density estimation and sampling?
(Real NVP https://arxiv.org/abs/1605.08803)

> Keep some set of features fixed and transform
others

> Z1:i—-1 = X111

> Ziqa = exp(f(xl:i—l)) O xiqg+90xi-1)
> Reverse or shuffle coordinates and repeat
» What is Jacobian?

Jr = []CMSS diag(exp(f(x1:i—1)))]

https://arxiv.org/abs/1605.08803

Checkboard or channel-wise masking can be used to
separate fixed and non-fixed set of variables

The squeeze operation trades off between spatial
and channel dimensions

H/2 x W/2 x 4C

GLOW: Convolutional flows
1 x 1 invertible convolutions are like
fully connected layers for each pixel

» Suppose an image has dimensionh X w X ¢

» Remember that a “1x1” convolution has kernel
sizeofl1 X1 Xc

» Thus if we use c filters than we map from a
h X w X ¢ to another h X w X ¢ image

> The number of parameters is a matrix K € R¢*¢

» Thus, a 1 x 1 convolution can also be seen as a
linear transformation along the channel
dimension

Highly realistic random samples from powerful
flow model (GLOW)

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye

29

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Similar concepts can be used to generate realistic
audio (WaveGlow)

> Listen to some examples
https://nv-adlr.github.io/WaveGlow

> Very similar concepts for audio generation

https://nv-adlr.github.io/WaveGlow

