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Announcements

▸Quiz moved to Friday
▸Same content (i.e., up to DCGANs, not today)
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GAN Limitation:
Cannot compute density values

▸Evaluation of GANs is challenging
▸(Explicit density models could use test log likelihood)
▸“I think this looks better than that”

▸Inception scores
▸Train separate image classifier
▸See if passing fakes to classifier produces a high confidence prediction

▸Cannot use for classification or outlier detection
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GAN Limitation: Challenging to train because of 
careful balance between discriminator and generator

1. Assumptions on possible 𝐷 and 𝐺
1. Theory – All possible 𝐷 and 𝐺
2. Reality – Only functions defined by a neural network

2. Assumptions on optimality
1. Theory – Both optimizations are solved perfectly
2. Reality – The inner maximization is only solved 

approximately, and this interacts with outer minimization
3. Assumption on expectations

1. Theory – Expectations over true distribution
2. Reality – Empirical expectations over finite sample; for 

images, much of the high-dimensional space does not have 
samples

▸GANs can be very difficult/finicky to train

David I. Inouye 3



GAN Limitation: Cannot go from observed to 
latent space, i.e. 𝑥 → 𝑧 not possible/easy

▸Cannot manipulate an observed image in latent 
space
▸Cannot do the following, 𝑥 → 𝑧,  𝑧& = 𝑧 + 3,  𝑧& → 𝑥&
▸Rather, must start from fake image based on random 
𝑧
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Normalizing flows use invertible deep models for 
the generator which allow more capabilities

▸Transforming between observed/input and latent 
space is easy
▸𝑥 = 𝐺 (𝑧)
▸𝑧 = 𝐺,-(𝑥)

▸Simple sampling like GANs
▸𝑧 ∼ SimpleDistribution
▸𝑥 = 𝐺 𝑧 ∼ �̂�? 𝑥 , which is estimated distribution

▸Exact density is computable via change of variables
▸Standard maximum likelihood estimation can be used for 

training
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Highly realistic random samples from powerful 
flow model (GLOW)
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Interpolation between real images using GLOW
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Transformations of real image along various 
features
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Back to maximum likelihood estimation (MLE):
How can we compute the likelihood 
for normalizing flows?

▸Suppose
▸𝑧 ∼ Uniform 0,1 , i. e. , 𝑝F 𝑧 = 1

(latent space is uniform)
▸𝐺 z = 2z
▸Thus, 𝑥 = 𝐺 𝑧 = 2𝑧.

▸What is the density function of 𝑥, what is 
𝑝I 𝑥 ?
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Change of variables formula gives 𝑝I in terms of 
the 𝑝F and the derivative of 𝐺,-

▸Key idea: Must conserve density volume (so 
that distribution sums to 1).
▸𝑝I 𝑥 𝑑𝑥 = 𝑝F 𝑧 𝑑𝑧 , this is like the 
preservation of volume/area/mass.
▸Intuition: We only have 1 unit of “dirt” to move 

around.
▸Rearrange above equation to get formula

𝑝I 𝑥 =
𝑑𝑧
𝑑𝑥

𝑝F 𝑧 =
𝑑𝐺,- 𝑥
𝑑𝑥

𝑝F 𝐺,- 𝑥
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Derivation of change of variables 
using CDF function (Increasing)

▸Assume 𝑥 = 𝐺 𝑧 ,	where 𝐺 𝑧 is	an	increasing	function
▸𝐹I 𝑎 = Pr 𝑥 ≤ 𝑎 = ∫,V

W 𝑝I 𝑡 𝑑𝑡
▸𝐹I 𝑎 = Pr 𝑥 ≤ 𝑎 = Pr 𝐺 𝑧 ≤ 𝑎

= Pr 𝑧 ≤ 𝐺,- 𝑎 = 𝐹F 𝐺,- 𝑎
▸Now take the derivative of both sides with respect to 𝑎

𝑑𝐹I 𝑎
𝑑𝑎

= 𝑝I 𝑎

𝑑𝐹F 𝐺,- 𝑎
𝑑𝑎

=
𝑑𝐹F 𝐺,- 𝑎
𝑑 𝐺,- 𝑎

𝑑𝐺,- 𝑎
𝑑𝑎

= 𝑝F 𝐺,- 𝑎
𝑑𝐺,- 𝑎
𝑑𝑎
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Derivation of change of variables 
using CDF function (Decreasing)

▸Assume 𝑥 = 𝐺 𝑧 ,	where 𝐺 𝑧 is	an	decreasing	function
▸𝐹I 𝑎 = Pr 𝑥 ≤ 𝑎 = ∫,V

W 𝑝I 𝑡 𝑑𝑡
▸𝐹I 𝑎 = Pr 𝑥 ≤ 𝑎 = Pr 𝐺 𝑧 ≤ 𝑎

= Pr 𝑧 > 𝐺,- 𝑎 = 1 − 𝐹F 𝐺,- 𝑎
▸Now take the derivative of both sides with respect to 𝑎

𝑑𝐹I 𝑎
𝑑𝑎

= 𝑝I 𝑎

−
𝑑𝐹F 𝐺,- 𝑎

𝑑𝑎
= −

𝑑𝐹F 𝐺,- 𝑎
𝑑 𝐺,- 𝑎

𝑑𝐺,- 𝑎
𝑑𝑎

= −𝑝F 𝐺,- 𝑎
𝑑𝐺,- 𝑎
𝑑𝑎
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Inverse transform sampling
is based on change of variables

▸𝑧 ∼ Uniform 0,1
▸𝑣 ∼ AnotherDistribution
▸𝑥 = 𝐹,- 𝑧 , where 𝐹,- is the inverse CDF for 𝑣
▸What is the distribution of 𝑥?

𝑝I 𝑥 = 𝑝F 𝐹 𝑥
𝑑𝐹 𝑥
𝑑𝑥

𝑝I 𝑥 = 1 𝑝^ 𝑥 = 𝑝^ 𝑥
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Announcements

▸Moved office hours from Thursday to Wed, 
3:30pm—4:30pm

▸Project submission instructions
▸https://www.davidinouye.com/course/ece57000-

fall-2019/project/

▸Quiz 6
▸Transposed convolution
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What about change of variables
in higher dimensions?

▸Let’s again build a little intuition (see demo)
▸Again, conservation of volume: Consider 
infinitesimal expansion or shrinkage of volume 

p 𝑥-, 𝑥_ 𝑑𝑥-𝑑𝑥_ = 𝑝 𝑧-, 𝑧_ 𝑑𝑧-𝑑𝑧_
▸Given that Jacobian is all mixed derivatives we 
get generalization for vector to vector invertible 
functions:

𝑝I 𝑥 = det 𝐽abc 𝑥 𝑝F 𝐺,- 𝑥
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What is the Jacobian again?
The best linear approximation at a point

▸The Jacobian definition:

𝑑𝑧
𝑑𝑥

= 𝐽F 𝑥 =

𝜕𝑧-
𝜕𝑥-

⋯
𝜕𝑧-
𝜕𝑥f

⋮ ⋱ ⋮
𝜕𝑧f
𝜕𝑥-

⋯
𝜕𝑧f
𝜕𝑥f

=

𝜕𝐺,- 𝑥 -
𝜕𝑥-

⋯
𝜕𝐺,- 𝑥 -
𝜕𝑥f

⋮ ⋱ ⋮
𝜕𝐺,- 𝑥 f

𝜕𝑥-
⋯

𝜕𝐺,- 𝑥 f
𝜕𝑥f

▸The determinant measures the local expansion 
or shrinkage around a point

David I. Inouye 16



One useful identity for determinant of Jacobian 
of invertible function

▸We	can	relate	the	Jacobian	of	a	function	to	the	
Jacobian	of	the	inverse	in	a	natural	way
▸𝐽abc 𝑥 = 𝐽abc 𝐺 𝑧 = 𝐽a 𝑧 ,- = 𝐽a 𝑧 ,-

▸Using this we can come up with different ways 
of writing the change of variables formula

𝑝I 𝑥 = det 𝐽abc 𝑥 𝑝F 𝐺,- 𝑥
𝑝I 𝑥 = det 𝐽a 𝑧 ,- 𝑝F 𝐺,- 𝑥
𝑝I 𝑥 = det 𝐽a 𝑧 ,- 𝑝F 𝑧
𝑝F 𝑧 = det 𝐽a 𝑧 𝑝I 𝑥
𝑝F 𝑧 = det 𝐽a 𝑧 𝑝I 𝐺 𝑧
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The determinant Jacobian of compositions of 
functions is the product of determinant Jacobians

▸Suppose 𝐹 𝑥 = 𝐹_ 𝐹- 𝑥
▸The Jacobian expands like the chain rule

𝐽m 𝑥 = 𝐽m_ 𝐹- 𝑥 𝐽mc 𝑥 = 𝐽mn𝐽mc
▸If we take the determinant of the Jacobian, then 
it becomes a product of determinants

det 𝐽m = det 𝐽mn𝐽mc = det 𝐽mn det 𝐽mc
▸This will be useful since each layer of our flows 
will be invertible

David I. Inouye 18



Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for 
each layer 

▸Simply optimize the maximize likelihood of model 
𝐹o = 𝐺,-

argmin
mp

− logq
r

�̂�I 𝑥r; 𝜃

argmin
mp

−u
r

log 𝑝F 𝐹o 𝑥r + log det 𝐽mp 𝑥r

argmin
mp

−u
r

log 𝑝F 𝐹o 𝑥r +u
ℓ

log det 𝐽mpℓ
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How do we create these invertible layers?

▸Consider arbitrary invertible transformation 𝐹o
▸How often would det 𝐽mp need to be computed?

▸High computation costs
▸Determinant costs roughly 𝑂 𝑑x even if Jacobian is 

already computed!
▸Would need to be computed every stochastic 

gradient iteration
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How do we create these invertible layers?
Independent transformation on each dimension

▸𝑧- = 𝐹-(𝑥-)
▸𝑧_ = 𝐹_(𝑥_)
▸𝑧x = 𝐹x(𝑥x)
▸What is the Jacobian?

𝐽m =

𝑑𝐹- 𝑥-
𝑑𝑥-

0 0

0
𝑑𝐹_ 𝑥_
𝑑𝑥_

0

0 0
𝑑𝐹x 𝑥x
𝑑𝑥x
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How do we create these invertible layers?
Autoregressive flows based on chain rule

▸Forward	- Density	estimation	(in	parallel)
▸𝑧- = 𝐹- 𝑥-
▸𝑧_ = 𝐹_ 𝑥_|𝑥-
▸𝑧x = 𝐹x 𝑥x|𝑥-, 𝑥_

▸Inverse – Sampling (conditioned on 𝑥 so must be sequential)
▸𝑥- = 𝐹-,- 𝑧-
▸𝑥_ = 𝐹_,- 𝑧_|𝑥-
▸𝑥x = 𝐹x,- 𝑧x|𝑥-, 𝑥_

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽m =

fmc
fIc

0 0
fmn
fIc

fmn
fIn

0
fm|
fIc

fm|
fIn

fm|
fI|
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How do we create these invertible layers?
Autoregressive flows based on chain rule

▸Forward	- Density	estimation	(sequential)
▸𝑧- = 𝐹- 𝑥-
▸𝑧_ = 𝐹_ 𝑥_|𝑧-
▸𝑧x = 𝐹x 𝑥x|𝑧-, 𝑧_

▸Inverse – Sampling (parallel)
▸𝑥- = 𝐹-,- 𝑧-
▸𝑥_ = 𝐹_,- 𝑧_|𝑧-
▸𝑥x = 𝐹x,- 𝑧x|𝑧-, 𝑧_

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽m =

fmc
fIc

0 0
fmn
fIc

fmn
fIn

0
fm|
fIc

fm|
fIn

fm|
fI|
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Scale-and-shift simple form to invertible functions 
(MAF https://arxiv.org/pdf/1705.07057.pdf)

▸Forward	– Density	estimation	(sequential)
▸𝑧- = exp(𝛼-)𝑥- + 𝜇-
▸𝑧_ = exp(𝛼_)𝑥_ + 𝜇_, 𝛼_ = 𝑓_ 𝑥- , 𝜇_ = 𝑔_(𝑥-)
▸𝑧x = exp(𝛼x)𝑥x + 𝜇x, 𝛼x = 𝑓x 𝑥-, 𝑥_ , 𝜇x = 𝑔x(𝑥-, 𝑥_)

▸What is the Jacobian and determinant?

𝐽m =

exp(𝛼-) 0 0
fFn
fIc

exp 𝛼_ 0
fF|
fIc

fF|
fIn

exp 𝛼x
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What if we want parallel 
density estimation and sampling?
(Real NVP https://arxiv.org/abs/1605.08803)

▸Keep some set of features fixed and transform 
others
▸𝑧-:r,- = 𝑥-:r,-
▸𝑧r:f = exp 𝑓 𝑥-:r,- ⨀ 𝑥r:f + 𝑔 𝑥-:r,-

▸Reverse or shuffle coordinates and repeat
▸What is Jacobian?

𝐽m =
𝐼 0

𝐽����� diag exp 𝑓 𝑥-:r,-
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Checkboard or channel-wise masking can be used to 
separate fixed and non-fixed set of variables
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The squeeze operation trades off between spatial 
and channel dimensions
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Squeeze

H x W x C H/2 x W/2 x 4C



GLOW: Convolutional flows
1 x 1 invertible convolutions are like 
fully connected layers for each pixel
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▸Suppose an image has dimension h × 𝑤 × 𝑐
▸Remember that a “1x1” convolution has kernel 
size of 1 × 1 × 𝒄
▸Thus if we use 𝑐 filters than we map from a 
h × 𝑤 × 𝑐 to another h × 𝑤 × 𝑐 image
▸The number of parameters is a matrix 𝐾 ∈ ℝ�×�

▸Thus, a 1 x 1 convolution can also be seen as a 
linear transformation along the channel 
dimension



Highly realistic random samples from powerful 
flow model (GLOW)
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Similar concepts can be used to generate realistic 
audio (WaveGlow)

▸Listen to some examples 
https://nv-adlr.github.io/WaveGlow

▸Very similar concepts for audio generation
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