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Previous deep normalizing flows are trained end-
to-end where all components are optimized 
simultaneously
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“Black box” deep model

End-to-end learning

“Gray box” deep model

▸Real NVP
▸MAF

▸GLOW
▸Etc.



Modular deep learning would allow local learning 
within each component
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“Black box” deep model

End-to-end learning

“Gray box” deep model

Modular learning ▸Density destructors
▸Each weak/shallow 

learning algorithm is 
independent

▸Learning algorithms 
could be 
heterogeneous
(e.g., SGD and 
decision trees)

▸Real NVP
▸MAF

▸GLOW
▸Etc.



Destructive learning enables modular deep 
learning via “reverse engineering” data

1. Find part to take off 
using understanding 
and expertise

2. Determine how to 
take off part in a 
reversible way (e.g., 
unscrewing bolts)

3. Remove part

4. Repeat

1. Find patterns in data 
via shallow/weak 
learning

2. Map model to 
destructive but 
invertible
transformation

3. Destroy the patterns 
via transformation

4. Repeat
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Reverse engineering phone Reverse engineering data



Destructive learning enables modular deep 
learning via “reverse engineering” data

1. Find patterns in data 
via shallow/weak 
learning

2. Map model to 
destructive 
transformation

3. Destroy the patterns 
via transformation

4. Repeat
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Data

𝐷"𝑓" Ω

𝐷%𝑓% Ω

𝐷&𝑓& Ω

Deep
model

Modular weak 
learning



Why use modular weak learning
for deep models?

Reuse
The algorithms, insights 
and intuitions of shallow 
learning can be lifted into 
the deep context 

Decoupling
Components can be 
debugged, tested and 
improved separate from 
the system
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Mainstream 
Deep Learning Weak

Learners



Why use modular weak learning
for deep models?

Algorithmic 
Interpretability
Increasing or decreasing 
model complexity is 
straightforward

Resource Constraints
Layer-wise training 
(memory bottleneck)

Pipelined training 
(computation bottleneck)

David I. Inouye Destructive Deep Learning 7

Shrink model
if problem

Grow if 
more data

versus

Shallow/weak online learners

Distributed on different 
processors or devices



Limitations of destructive modular learning

▸Unlikely to perform as well as joint learning
▸Greedy vs joint optimization
▸Local vs global optimization

▸Must create destructor mapping Ω, which can 
be challenging

▸Often requires more layers to achieve similar 
result because of optimization
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Density destructors generalize 
the univariate CDF transformation

▸Univariate: CDF transformation

▸The map Ω ℙ = 𝐷 should:
1. Encode the density ℙ into 𝐷, i.e. ∃ Ω*".
2. Ensure 𝐷 destroys all patterns in ℙ when applied to the random 

variable, i.e. the distribution of D, 𝑋 is	maximum	entropy.
▸A density destructor is an invertible transformation such that

𝑋 ∼ ℙ>
𝐷> 𝑋 ∼ Uniform 0, 1 D

▸Ω*" 𝐷> = det 𝐽GH = ℙ> ß Closed-form	density!
▸Different	from	multivariate	CDF	function:	𝐹 𝑥 :ℝD → [0,1]
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Many shallow densities can be mapped to destructors
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Independent (Beta distributions) Multivariate Gaussian

Gaussian Mixture Decision Tree Density

Data before (left) and after (right) transformation via corresponding density destructor.
Note: Color is just to show correspondence between areas before and after transformation.



Example Destructors
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Deep density destructors via sequence of weak 
destructors
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Data

𝐷"ℙ" Ω

𝐷%ℙ% Ω

𝐷&ℙ& Ω

Weak density 
estimation

Train
Data

Implicit
Model

2nd Layer

8th Layer

53rd Layer



Density computation and sample generation
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Reuse: Deep density destructors can be built 
from simple and well-understood components

▸MNIST 𝑑 = 784
▸CIFAR-10 𝑑 = 3072

▸Autoregressive flow 
baselines (DNN-based)
▸MADE [Germain et al., 

2015]
▸Real NVP [Dinh, et al. 2017]
▸MAF [Papamakarios et al. 

2017]

▸Our deep copula method
▸PCA + histograms
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MNIST CIFAR-10
LL D T LL D T

Models from MAF paper computed on Titan X GPU
Gaussian -1367 1 0.0 2367 1 0.0
MADE -1385 1 0.0 448 1 0.2
MADE MoG -1042 1 0.1 -53 1 0.3
Real NVP -1329 5 0.2 2600 5 1.4
Real NVP -1765 10 0.2 2469 10 1.0
MAF -1300 5 0.1 2941 5 3.7
MAF -1314 10 0.2 3054 10 7.5
MAF MoG -1100 5 0.2 2822 5 3.9
Our proposed destructors computed on 10 CPUs
Copula -1028 5 0.2 2626 17 10.1
Pairs (Cop) -1043 17 0.7 -2518 31 7.4
Pairs (Tree) -1003 21 1.0 -2404 31 38.0LL = Log Likelihood (higher is better)
D = # of layers,  T = Time



Modularity enables classical learning 
improvements to carry over to deep learning
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Small-sample experiment where number of dimensions is 63 and number of training 
samples is 30.  Notice how mainstream deep learning fails in this setting.

Log Likelihood

Independent density 
classical learning

Destructive deep learning
via small-sample classical learning

Baseline mainstream 
deep density learning

Small-sample classical learning



Density destructor algorithm performs greedy 
layer-wise construction of deep destructor

1. Simple density estimation (GMM, Gaussian, 
tree density, etc.)
𝑄d ← argmin

g∈𝒬
𝐾𝐿 𝑃 𝑥d*" , 𝑄 𝑥d*"

2. Map density to simple destructor layer
𝑑d = Ω 𝑄d

3. Transform data for next layer
𝑥d = 𝑑d 𝑥d*"

4. Update deep destructor
𝐷d = 𝑑d ∘ 𝐷d*"
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Destructor algorithm can be shown to 
monotonically decrease the negative log 
likelihood after every iteration/layer
▸The destructive learning objective, where 𝑧 =
𝐷 𝑥 , and 𝑈p 𝑧 is the uniform density function

argmin
G
𝐾𝐿 𝑃p 𝑧 , 𝑈p 𝑧

▸KL equivalence lemma, let 𝑧 = 𝐷 𝑥
𝐾𝐿 𝑃q 𝑥 , 𝑄q 𝑥 = 𝐾𝐿 𝑃p 𝑧 , 𝑄p 𝑧

▸Simple corollary is that objective above is MLE:
argmin

G
𝐾𝐿 𝑃q 𝑥 , \𝑃q 𝑥

argmin
G
𝐾𝐿 𝑃q 𝑥 , 𝐽G 𝑥 𝑈p 𝐷 𝑥

argmin
G
𝐾𝐿 𝑃q 𝑥 , 𝐽G 𝑥
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Destructor algorithm can be shown to 
monotonically decrease the negative log 
likelihood after every iteration/layer
▸The destructive learning objective, where 𝑧 =
𝐷 𝑥 , and 𝑈p 𝑧 is the uniform density function

argmin
G
𝐾𝐿 𝑃p 𝑧 , 𝑈p 𝑧

▸Want: Every iteration decreases objective:
𝐾𝐿 𝑃 𝐷d 𝑥 , 𝑈 𝐷d 𝑥 ≤ 𝐾𝐿 𝑃 𝐷d*" 𝑥 , 𝑈 𝐷d*" 𝑥

▸Let 𝑄 𝑧 ≡ 𝑈 𝑧 , 𝑥 = 𝐷d*" 𝑥 and 𝑧 = 𝐷d 𝑥

𝐾𝐿 𝑃 𝑧 , 𝑈 𝑧 = 𝐾𝐿 𝑃 𝑧 , 𝑄 𝑧
= 𝐾𝐿 𝑃 𝑥 , 𝑄 𝑥 ≤ 𝐾𝐿 𝑃 𝑥 , 𝑈 𝑥
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