Unsupervised Dimensionality Reduction

ECE57000: Artificial Intelligence, Fall 2019
David I. Inouye
Announcements

- Must submit term paper PDF to TWO assignments on Blackboard
 - Peer assessment
 - Instructor assessment
- Course project
 - No deadline extension
 - Paper should be 5.5-6 pages long (excluding references)
 - Strict limit on 6 pages, can include appendix
 - I’d suggest finish term paper with minimum viable product, then improve if time available
 - Looking for deeper understanding via writing and implementation (rather than results themselves)
Announcements: (Tentative) Review format

1. Please summarize the key idea in each published paper that this term paper reports on in one sentence.
 - If the paper does not have clear headings for the 3 selected papers (e.g., the paper has a single "Related Works" section), please just choose 3 papers that are cited and discussed in the related works section. Some term papers may discuss more than 3 papers.

2. Please summarize the implementation that this term paper reports. State what the implementation takes as input (in one sentence). State what the implementation produces as output (in one sentence). Describe the algorithm in English, mathematical notation, or pseudocode.

3. Please summarize the experiments/evaluations and results in one sentence.

4. What didn't you understand in this term paper (one sentence)?

5. How can the author improve this term paper (one sentence)?

Please "reverse" rank (where 5 is best) this selection in comparison to the other papers you are reviewing, i.e., 5 = Best paper, ..., 1 = Worst paper.
Announcements: A few principles for reviews

(Credit: Prof. Jeffrey Siskind)

1. It is imperative to be polite in reviews.

2. The primary purpose of the review is not to criticize the author or their work; it is to help them improve their work.

3. The most helpful things in reviews are suggestions about how to improve the paper.

4. Telling the author what you understood and what you didn't also helps the author improve the paper.
Why dimensionality reduction?
Lower computation costs

▸ Suppose original dimension is large like $d = 10000$
 (e.g., images, DNA sequencing, or text)

▸ If we reduce to $k = 100$ dimensions, the training algorithm can be sped up by $100 \times$
Why dimensionality reduction?

Visualization

- Allows 2D scatterplot visualizations even of high-dimensional data (2D projection of digits)

https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html
Why dimensionality reduction?
Noise reduction via reconstruction
Demo of PCA via sklearn

- Random projections vs PCA projections
- Visualizations of
 - Minimum reconstruction error
 - Maximum variance
 - Explained variance based on k
- Code examples
 - Digits
 - Eigenfaces
Relation to clustering:
One-hot vectors vs continuous vectors

- k-means clustering can be seen as reducing the dimensionality to k latent categories
 - Each category can be represented by a one-hot vector of length k
 - e.g., if $k = 3$, $z_i \in \{[1,0,0], [0,1,0], [0,0,1]\}, \forall i$
 - Every instance can only “belong” to one category
- In dimensionality reduction techniques, the latent vectors can have non-zeros for all k latent dimensions
 - e.g., if $k = 3$, $z_i \in \mathbb{R}^3, \forall i$
Relation to clustering: K-means objective can be reformulated as seeking the best approximation to X with low rank constraint ($k < d$)

- Original k-means objective

$$\min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{\mu_1, \ldots, \mu_k} \sum_{j=1}^{k} \sum_{x \in \mathcal{C}_j} \|x - \mu_j\|^2$$

- Equivalent to the following objective

$$\min_{Z,M} \|X - ZM\|_F^2$$

where $Z \in \{0,1\}^{n \times k}$, $\sum z_{ij} = 1, \forall i$

and $M \in \mathbb{R}^{k \times d}$

- What if we relax the constraint on Z?
Derivation of equivalence between two objectives for k-means

$y_i \in \{1, ..., k\}$ is the cluster label for each instance

z_i is the corresponding one hot vector to y_i

$M = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_k \end{bmatrix}$ is the matrix of mean vectors

$\sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|_2^2 = \sum_{i=1}^{n} \|x_i - \mu_{y_i}\|_2^2 = \sum_{i=1}^{n} \|x_i - z_i M\|_2^2 = \sum_{i=1}^{n} \sum_{s=1}^{d} (x_{is} - z_i^T m_s)^2 = \left(\sqrt{\sum_{i=1}^{n} \sum_{s=1}^{d} (x_{is} - z_i^T m_s)^2}\right)^2 = \|X - ZM\|_F^2$
Principal Component Analysis (PCA) can be seen as minimizing the reconstruction error of the data using only $k \leq d$ components

- (compare errors on board - cluster vs. PCA)
- Similar to clustering except Z is unconstrained and W^T has orthogonal rows

$$\min_{Z,W} \|X - ZW^T\|_F^2$$

where

- $X_c = X - \mu_x$ (centered)
- $Z \in \mathbb{R}^{n \times k}$ (latent representation)
- $W^T \in \mathbb{R}^{k \times d}$ (principal components)
- $w_s^T w_t = 0, w_s^T w_s = \|w_s\|_2^2 = 1, \forall s, t$ (orthogonal constraint)
Minimum reconstruction error (red bars)

[Image of a scatter plot with minimum reconstruction error highlighted by red bars.]

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
The solution can be computed as the top k right singular vectors via SVD (lowest reconstruction error)

▶ If $X_c = USV^T$, then the solution to the previous problem is simply $W^T = V_{1:k}^T$
 ▶ i.e. the first k singular vectors
▶ Remember if $k = d$, then perfect reconstruction
Minimum reconstruction error (red bars) =
Maximum latent variance (spread of red points)

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
Minimizing reconstruction error is equivalent to maximizing variance of latent projection

- (compare interpretations on board)
- Consider one-dimensional projection, i.e. $k = 1$
- Let $z = w^T x$, where $\|w\|_2 = 1$
- What is the empirical variance?
 - For simplicity, we assume X has a mean of 0.
 \[
 \text{var}[z] = \mathbb{E}[(z - \mu_z)^2] = \mathbb{E}[z^2] \\
 = \mathbb{E}[(w^T x)(w^T x)] = \mathbb{E}[w^T(x x^T)w] \\
 = w^T \mathbb{E}[x x^T]w = w^T \hat{\Sigma}_x w
 \]
- Thus we have the following:
 \[
 \max_w w^T \hat{\Sigma}_x w, \quad s.t. \|w\|_2 = 1
 \]
The solution is the eigenvector with the largest eigenvalue of $\hat{\Sigma}_x$
For general k, the solution is the top k eigenvectors

- Suppose $\hat{\Sigma}_x = Q\Lambda Q^T$, where $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$
 (because $\hat{\Sigma}_x$ is positive semi-definite)
- Then, $w^* = q_1 = \arg\max_w w^T \hat{\Sigma}_x w$
- The more general case

$$W^* = Q_{1:k} = \arg\max_{W \in \mathbb{R}^{d \times k}} \sum_{j=1}^{k} w_j^T \hat{\Sigma}_x w_j$$

where $w_s^T w_t = 0$, $w_s^T w_s = \|w_s\|_2 = 1$, $\forall s, t$
Both approaches get the first k right singular vectors of X_c

- **Minimize reconstruction error**
 - Singular value decomposition (SVD) of $X_c = USV^T$
 - Solution: $W^T = V_{1:k}^T$

- **Maximize variance of latent projection**
 - Eigendecomposition of covariance
 \[
 \hat{\mathbb{E}}[xx^T] = X_c^T X_c = (USV^T)^T (USV^T) \\
 = (VSU^T)(USV^T) = VS (U^T U) SV^T = VS^2 V^T \\
 = Q \Lambda Q^T
 \]
 - Solution: $W^T = Q_{1:k}^T = V_{1:k}^T$
Non-negative matrix factorization (NMF) provides more of a part-based representation than PCA.

Objective NMF

\[
\min_{Z,W} \| X - ZW^T \|_F^2
\]

where

\(X \in \mathbb{R}^{n \times d} \)
\(Z \in \mathbb{R}^{n \times k} \)
\(W^T \in \mathbb{R}^{k \times d} \)

NMF on document-word count matrix can be seen to identify underlying topics/factors

- Suppose we have a collection of n documents and there are d unique words
- Let each dimension correspond to the count of that word in the document
- Example:
 - “Intelligent applications creates intelligent business processes”
 - “Bots are intelligent applications”
 - “I do business intelligence”
- Non-negative document-word matrix

<table>
<thead>
<tr>
<th></th>
<th>intelligent</th>
<th>applications</th>
<th>creates</th>
<th>business</th>
<th>processes</th>
<th>bots</th>
<th>are</th>
<th>i</th>
<th>do</th>
<th>intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Doc 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Doc 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NMF on encyclopedia articles reveals underlying topics in each document

4 selected components or "topics"

Other irrelevant topics

Probabilistic Latent Semantic Analysis (PLSA) can be seen as non-negative matrix factorization with KL divergence loss (instead of squared error)

Equivalence formalized in:
The more well-known variant of topic modeling is called **Latent Dirichlet Allocation (LDA)**.
