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Announcements

▸EE 134 is Liming’s temporary location for office 
hours

▸Make sure you are working on selecting your 3 
research papers

▸Homework 1 is posted
▸https://www.davidinouye.com/course/ece57000-

fall-2019/hw1/
▸See link on Piazza to initialize git repository
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https://www.davidinouye.com/course/ece57000-fall-2019/hw1/


GIT Structure
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https://illustrated-
git.readthedocs.io/en/latest/

https://illustrated-git.readthedocs.io/en/latest/


Correlation analysis vs linear regression analysis 
(ordinary least squares, OLS)

▸The goals are different
▸Correlation – Measure linear dependence
▸Linear regression – Predict 𝑦 given 𝑥

▸The output of the two methods is different
▸Correlation – Output is single number 𝑝 between -1 

and 1 that measures linear dependency between 
variables
▸Linear regression – Outputs function 𝑦 ≈ 𝑓(𝑥), 

which has a linear form, i.e. 𝑓 𝑥 = 𝑏𝑥 + 𝑎
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Correlation analysis vs linear regression analysis 
(ordinary least squares, OLS)

▸We must assume we are doing ordinary least 
squares (OLS) linear regression
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https://scikit-
learn.org/stable/auto_examples/linear_model
/plot_ransac.html

https://www.quora.com/How-is-
Robust-Regression-different-from-
standard-OLS

https://scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html
https://www.quora.com/How-is-Robust-Regression-different-from-standard-OLS


Correlation analysis vs linear regression analysis 
(ordinary least squares, OLS)

▸However, the output of correlation analysis and 
the parameters of linear regression have some 
relationship
▸Let 𝑠- be the standard deviation of 𝑥 and	similarly	
for	𝑦,	let	𝑠-,= be	the	covariance	between	𝑥 and	𝑦
▸We have this simple relationship 𝑝 = 𝑏 CD

CE
or 

similarly 𝑏 = 𝑝 CE
CD

▸We can derive this from the following:
▸𝑝 = CD,E

CDCE
,	correlation	formula

▸𝑏 = CD,E
CDG

, 𝑎 = H𝑦 − 𝑏�̅�, linear regression formula
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https://www.stat.berkeley.edu/~rabbee/correlation.pdf

https://www.stat.berkeley.edu/~rabbee/correlation.pdf


Correlation analysis vs linear regression analysis 
(ordinary least squares, OLS)

▸Cannot derive one from the other directly.  
Must know standard deviations.

▸Correlation is invariant to scaling of 𝑥 and 𝑦, 
both good and bad

▸The output of linear regression does not retain 
any information about the original distribution 
(it’s just a line)
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The dataset cannot determine the task,
rather the context determines the task
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𝑑 features/attributes/covariates

𝑛 samples/
observations/
examples

yes no

Adapted from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

Color Shape Size (cm) Is it good?

Blue Square 10 yes

Red Ellipse 2.4 yes

Red Ellipse 20.7 no



Dataset: Age and top running/walking speed
What is the task and what are 𝑥 and 𝑦?

▸Suppose you are a running shoe company; you 
would like to make personalized products for each 
person but you can only create three product lines 
given this data

▸Suppose you are a policeman and a suspect outran 
you; you would like to guess more about the suspect

▸Suppose you are a criminal and you know the one 
policeman on duty
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Generalization beyond the training set 
is the main goal of learning
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𝑑 features/attributes/covariates

𝑛 samples/
observations/
examples

yes no

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

𝑥M
𝑥N

𝑦M
𝑦N

Color Shape Size (cm) Is it good?

Blue Square 10 yes

Red Ellipse 2.4 yes

Red Ellipse 20.7 no



Generalization beyond the training set 
is the main goal of learning
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Original source for figure unknown.



Probability can formalize
the handling of ambiguity
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𝑑 features/attributes/covariates

𝑛 samples/
observations/
examples

yes no

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

𝑥M
𝑥N

𝑦M
𝑦N

Color Shape Size (cm) Is it good?

Blue Square 10 yes

Red Ellipse 2.4 yes

Red Ellipse 20.7 no



The curse of dimensionality is unintuitive

▸Ratio between unit hypersphere to unit 
hypercube
▸1D : 2/2 = 1
▸2D : R

S
= 0.7854

▸3D : 
Z
[R

\
= 0.5238

▸d-dimensions: 𝑉_ 𝑟 = R
a
G

b a
GcM

𝑟_

▸Thus, for 10-D: 2.55/2^10 = 2.55/1024 = 0.00249
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