Introduction to Machine Learning (and Notation)

David I. Inouye

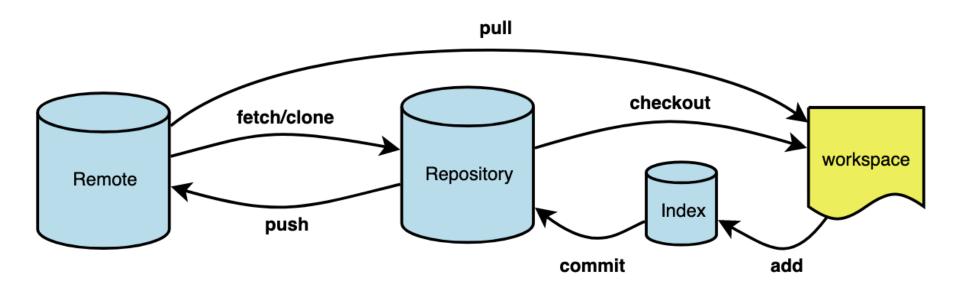
Wednesday, August 28, 2019

Announcements

► EE 134 is Liming's temporary location for office hours

- Make sure you are working on selecting your 3 research papers
- Homework 1 is posted
 - https://www.davidinouye.com/course/ece57000-fall-2019/hw1/
 - See link on Piazza to initialize git repository

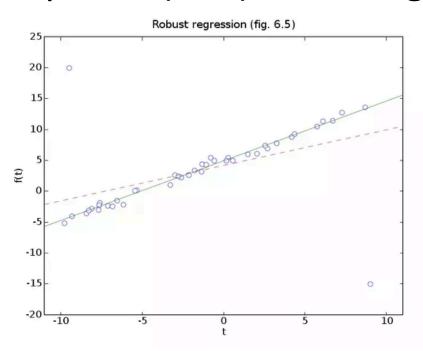
GIT Structure

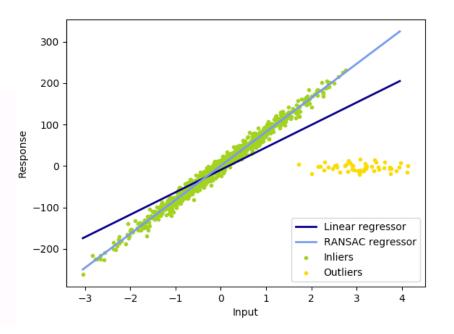


https://illustratedgit.readthedocs.io/en/latest/

- ► The goals are different
 - Correlation Measure linear dependence
 - ► Linear regression Predict y given x
- The output of the two methods is different
 - ► Correlation Output is **single number** *p* between -1 and 1 that measures *linear* dependency between variables
 - ▶ Linear regression Outputs **function** $y \approx f(x)$, which has a linear form, i.e. f(x) = bx + a

We must assume we are doing ordinary least squares (OLS) linear regression





https://www.quora.com/How-is-Robust-Regression-different-fromstandard-OLS

https://scikitlearn.org/stable/auto_examples/linear_model /plot_ransac.html

- However, the output of correlation analysis and the parameters of linear regression have some relationship
 - Let s_x be the standard deviation of x and similarly for y, let $s_{x,y}$ be the covariance between x and y
 - We have this simple relationship $p=b\left(\frac{s_\chi}{s_y}\right)$ or similarly $b=p\left(\frac{s_y}{s_\chi}\right)$
 - We can derive this from the following:
 - ► $p = \frac{s_{x,y}}{s_x s_y}$, correlation formula ► $b = \frac{s_{x,y}}{s_x^2}$, $a = \bar{y} - b\bar{x}$, linear regression formula

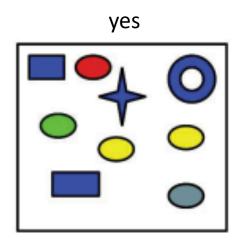
https://www.stat.berkeley.edu/~rabbee/correlation.pdf

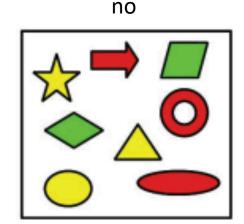
Cannot derive one from the other directly.
Must know standard deviations.

Correlation is invariant to scaling of x and y, both good and bad

► The output of linear regression does not retain any information about the original distribution (it's just a line)

The dataset cannot determine the task, rather the context determines the task





d features/attributes/covariates

n samples/observations/examples

Color	Shape	Size (cm)	Is it good?
Blue	Square	10	yes
Red	Ellipse	2.4	yes
Red	Ellipse	20.7	no

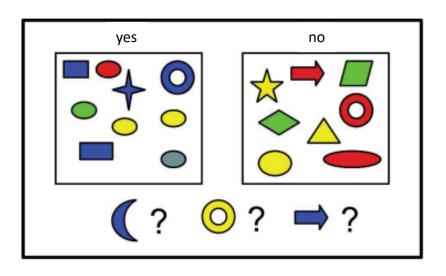
Dataset: Age and top running/walking speed What is the task and what are x and y?

Suppose you are a running shoe company; you would like to make personalized products for each person but you can only create three product lines given this data

Suppose you are a policeman and a suspect outran you; you would like to guess more about the suspect

Suppose you are a criminal and you know the one policeman on duty

Generalization beyond the training set is the main goal of learning



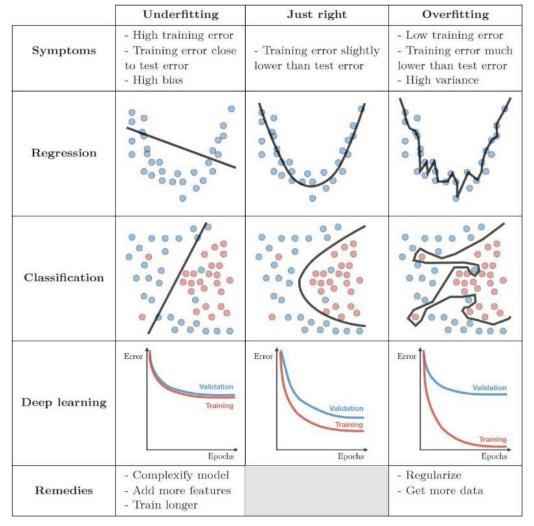
d features/attributes/covariates

n samples/observations/examples

Color Is it good? Shape Size (cm) Blue Square 10 yes x_1 y_1 Red Ellipse 2.4 yes y_2 20.7 Red Ellipse no

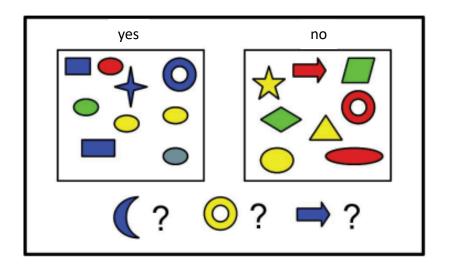
Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

Generalization beyond the training set is the main goal of learning



Original source for figure unknown.

Probability can formalize the handling of ambiguity



d features/attributes/covariates

n samples/
observations/
examples

Is it good? Color Size (cm) Shape Blue Square 10 yes x_1 y_1 Ellipse 2.4 Red yes x_2 y_2 Ellipse 20.7 Red no

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

The curse of dimensionality is *unintuitive*

Ratio between unit hypersphere to unit hypercube

► 1D:
$$2/2 = 1$$

► 2D :
$$\frac{\pi'}{\frac{4}{4}}$$
 = 0.7854
► 3D : $\frac{\frac{\pi'}{4}}{\frac{\pi}{8}}$ = 0.5238

> 3D:
$$\frac{3\pi}{8} = 0.5238$$

