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Announcements

▸TA: Liming Wu

▸Homework 1 will be posted by Wed due next 
Wed
▸Submit GitHub username ASAP: 

https://forms.gle/A4to4Q7huAiKaQBN9

▸Hopefully, first quiz on Wednesday, beginning of 
class
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https://forms.gle/A4to4Q7huAiKaQBN9


Outline

▸Supervised learning
▸Regression
▸Classification

▸Unsupervised learning

▸Other key concepts
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The goal of supervised learning is to estimate a 
mapping (or function) between input and output
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The goal of supervised learning is to estimate a 
mapping (or function) between input and output
given only input-output examples
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The set of input-output pairs is called a training set,
denoted by 𝒟 = 𝒙&, 𝑦& &()

*

▸Input 𝒙&
▸Called features (ML), attributes, or covariates (Stats). 

Sometimes just variables.
▸Can be numeric, categorical, discrete, or nominal.
▸Examples

▸[height, weight, age, gender]
▸[𝑥), 𝑥-,⋯ , 𝑥/] – A d-dimensional vector of numbers
▸Image
▸Email message

▸Output 𝑦&
▸Called output, response, or target (or label)
▸Real-valued/numeric output: e.g., 𝑦& ∈ ℛ
▸Categorical, discrete, or nominal output: 𝑦& from finite 

set, i.e., 𝑦& ∈ {1,2,⋯ , 𝑐}
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If the output 𝑦& is numeric, 
then the problem is known as regression
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NOTE: Input 𝑥 does not have to be numeric.  Only the output 𝑦 must be numeric.



If the output 𝑦& is numeric, 
then the problem is known as regression

▸Given height 𝑥&, predict age 𝑦&

▸Predict GPA given SAT score

▸Predict SAT score given GPA

▸Predict GRE given SAT and GPA
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If output is categorical, 
then the problem is known as classification
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If output is categorical, 
then the problem is known as classification

▸Given height 𝑥, predict “male” (𝑦 = 0) or 
“female” (𝑦 = 1)

▸Predict defaulting on loan (“yes” or “no”) given 
salary and mortgage payment
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Side note: Encoding / representing a categorical 
variable can be done in many ways

▸Suppose the categorical variable is “yes” and “no”
▸Canonical ways: “no” -> 0 and “yes -> 1
▸What are other possible encodings?

▸What if there are more than two categories such as 
cats, dogs, fish and snakes?

▸What is good and bad about using {1,2,3,4} for 
above example of animals?

▸One-hot encoding is another common way
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The goal of unsupervised learning is to find 
“interesting patterns” ONLY in the input
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Input
𝒙

??
? ▸Also called descriptive 

learning or knowledge 
discovery

▸What are “interesting 
patterns”?
▸Could be many things
▸Clusters
▸Correlations



In unsupervised learning, the training set is only a 
set of input values 𝒟 = 𝒙& &()*

▸Estimate natural clusters (or groups) of 
customers

▸Estimate the correlation between height and
weight, 𝒙 = [ℎ, 𝑤]

▸Estimate a single number that summarizes all 
variables of wealth (e.g. credit score)
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Given this dataset, should we use supervised or 
unsupervised learning?

David I. Inouye Introduction to Machine Learning 13

𝑑 features/attributes/covariates

𝑛 samples/
observations/
examples

yes no

Adapted from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

Color Shape Size (cm) Is it good?

Blue Square 10 yes

Red Ellipse 2.4 yes

Red Ellipse 20.7 no



Is this a regression or classification problem?
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Suppose we assume classification, which features 
are the input 𝒙 and which are the output 𝑦?
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Suppose we assume regression, which features 
are the input 𝒙 and which are the output 𝑦?
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How could we use unsupervised learning?
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The dataset cannot determine the task,
rather the context determines the task
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