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Informally, entropy measures the “amount of
randomness/disorder” of a distribution

> Formally, entropy for discrete variables

H(P(x)) = E[—-logP(x)] = 2 —P(x)log P(x)

> Formally, differential entropy for continuous
variables

H(p(0) = E[-logp(x)] = f —p(x) logp(x) dx

X
» Consider fair coin vs coin where both sides are

heads
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Maximum entropy probability distributions are
the most “random” or “smooth” given
expectation constraints

> Maximum entropy distribution problem

p*(x) = arg max H (p(x))

s.t. Vi €{1, ...k}, Exopolfi(x)] = 4
> “Maximal uncertainty while fitting data”

» Surprisingly simple solution:

k
p*(x; M1, .., Mg) X €XP (Z mfl-(x))
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Maximum entropy principle is also similar to
Occam’s razor principle
“Simple explanations better than complex ones.”

> Suppose we only know that X € [0, 1], what is
the maximum entropy distribution p(x)?

> Uniform distribution p(x) = 1

> Suppose we know that X € |0, o) and that
E[x] = A, what is the max entropy distribution?

» Exponential distribution
p(x) = dexp(—Ax)

> (Check distribution properties on board, see if it
matches form)
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Gaussian distribution is the maximum entropy
distribution given only mean and second
moment/variance

dp ose we know that X € R and that E|lx]| = n,

d b “] =12, what is the maximum entropy
istribution:

» Gaussian distribution:
() = 1 (x — p)?
Y e A 2072

» Wait, how does that have the same form as the
solution? (derive on board)

» Check
Ik

1
p*(x) = exp (nlx + 1,x% A i, | glog(—an))
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Many more common distributions are
maximum entropy distributions
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> Bernoulli (coin flip) oo o A=10

distribution for X € {0, 1} o2 |ee
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> Poisson distribution for count oottt

data
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» Beta distribution for
X €|0,1]
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Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

» Formally, KL divergence for discrete variables
KL(PGO), Q(0)) = Erep [l08 03] = 2 P log 5 3
x),0(x)) =E,_pllo = x)lo
i 7IE5) v ")
» Formally, KL divergence for co(nt;nuous variables ()
p\x p\x
KL(p(x),q(x)) = Ex. [lo ]zJ (x)lo dx
p(x),q(x) x~p 108N = | P 8200
> Note: NO negative sign compared to entropy
> Note: Not symmetric!

> Non-negative property: KL(p(x), q(x)) =0

» Equal distribution property:
KL(p(x),q(x)) = 0 & p(x) = q(x)
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One use of KL divergence is to estimate
distribution parameters only from samples

> Let p(x) denote the real/true distribution of
the data

> p(x) is unknown
> We only have samples {x;}i-; from p(x)

> Let G(x; 8) denote an estimate of the true
distribution

> Parametrized by 0

> We want to find g (x; 8) that is closest to p(x)
0" = argmin KL(p(x), §(x; 6))
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One use of KL divergence is to estimate
distribution parameters only from samples

> We want to find g(x; 8) that is closest to p(x)
0" = argmin KL(p(x), §(x; 6))
» Wait, but we don’t know p(x), how do we do
this?
> (Simplify on board)
» Two main ideas for simplification

» Constants with respect to (w.r.t.) 8 can be ignored
> Full expectation replaced by empirical expectation
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