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Announcements

▸Resubmit HW2 only if you had formatting 
mistakes
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Maximum likelihood estimation (MLE) is another way 
to estimate distribution parameters from samples

▸Likelihood function how likely (or probable) a dataset 𝒟 =
𝑥$ $%&' is under a distribution with parameters 𝜃

ℒ 𝜃;𝒟 = 𝑝 𝑥&, 𝑥-, … , 𝑥'; 𝜃
▸If we assume samples (or observations) of dataset are 

independent and identically distributed (iid), then

ℒ 𝜃;𝒟 =/
$%&

'

𝑝 𝑥$; 𝜃

▸Often simplified to the log-likelihood function
ℓ 𝜃;𝒟 = log ℒ(𝜃;𝒟)

▸Example: Coin flips with Bernoulli
▸Non iid example: First flip Bernoulli, then alternating
▸Example: Flight delays with exponential distribution
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The likelihood function is a function of parameters 𝜃
as opposed to a density which is a function of 𝑥

▸Sometimes written ℒ 𝜽; 𝒙 = 𝑝(𝒙; 𝜽)

▸Subtle but important difference with PDF/PMF
▸PDF/PMF are functions of 𝑥 where 𝜃 is fixed
▸Likelihood is function of 𝜃 where 𝑥 is fixed

▸Additionally, likelihood function ℒ is usually 
product of density functions (if iid)
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Maximum likelihood (MLE) is another way to 
estimate distribution parameters from samples

▸Optimize the following
𝜃∗ = argmax

=
ℒ(𝜃;𝒟)

▸(Derive negative log likelihood)
▸Equivalent to

𝜃∗ = argmin
=
−
1
𝑛
C
$%&

'

log 𝑝(𝑥$; 𝜃)

▸Wait, doesn’t that look familiar?
▸MLE equivalent to minimum KL divergence!
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Example: Estimate Bernoulli parameter 𝑝 given 
many coin flips

▸𝒟 = 𝐻, 𝑇, 𝑇, 𝑇, 𝐻

𝜃∗ = argmin
=
−
1
𝑛
C
$%&

'

log 𝑝(𝑥$; 𝜃)
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Example: Estimate mean parameter 𝜆 of 
exponential distribution

▸𝒟 = 𝑥&, 𝑥-, … , 𝑥'
▸𝑝 𝑥; 𝜆 = 𝜆 exp −𝜆𝑥
▸log 𝑝 𝑥; 𝜆 = − 𝜆𝑥 + log 𝜆

𝜃∗ = argmin
=
−
1
𝑛
C
$%&

'

log 𝑝(𝑥$; 𝜃)
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MLE is not always appropriate 
and fails in certain important situations

▸Corrupt/noisy samples (related to robustness)
▸Cashiers using 1111 for birth year: 908 years old
▸One star ratings

▸Finite (sometimes small) number of samples
▸One or two coin flips, Bernoulli
▸1D with one sample, Gaussian
▸2D with two samples, multivariate Gaussian
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Robust estimators of a Gaussian mean can be 
computed using median

▸Suppose corruption is 30% (e.g., 30% of cashiers 
don’t put in correct birth year)
▸MLE estimator of Gaussian is sample average

argmin
J

1
𝑛
C
$

1
2
𝑥$ − 𝜇 -

▸Rather we can use the median which is:
argmin

J

1
𝑛
C
$

|𝑥$ − 𝜇|

▸(demo)
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Regularized MLE is a way to handle finite or small 
sample sizes

▸Maximize likelihood + regularization penalty
argmax

=
ℓ 𝜃;𝒟 − 𝜆𝑅(𝜃)

▸Often written as minimizing negative likelihood
argmin

=
−ℓ 𝜃;𝒟 + 𝜆𝑅(𝜃)

▸Concrete example for Gaussian mean estimation 
where 𝜎- = 1 and 𝜆 = &

-
argmin

J
−ℓ 𝜇;𝒟 +

1
2 𝜇 -

-

argmin
J
C
$

1
2
𝑥 − 𝜇 - +

1
2
𝜇-
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The most ubiquitous multivariate distribution is 
the multivariate Gaussian distribution

▸Compare univariate to multivariate:
▸𝜇 is mean and Σ is covariance

𝑝 𝑥 =
1
2𝜋𝜎-

exp −
1
2
𝑥 − 𝜇 -

𝜎-

𝑝 𝑥&, … , 𝑥S

=
1

2𝜋
S
det Σ

exp −
1
2
𝑥 − 𝜇 UΣV& 𝑥 − 𝜇

▸Θ = ΣV& is called the precision matrix (or inverse covariance)
▸Σ and Θ must be positive definite Σ > 0
▸(Suppose Σ = 𝐼, suppose 𝜇 = 0)
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Marginal and conditional distributions are 
Gaussian and can be computed in closed-form

▸2D case: 
𝒙 = 𝑥&, 𝑥- ∼ 𝒩 𝜇 = 𝜇&, 𝜇- , Σ =

𝜎&- 𝜎&-
𝜎-& 𝜎--

▸Marginal distributions:
𝑥& ∼ 𝒩 𝜇 = 𝜇&, 𝜎- = 𝜎&-
𝑥- ∼ 𝒩 𝜇 = 𝜇-, 𝜎- = 𝜎--

▸Conditional distributions:
𝑥&|𝑥- = 𝑎
∼ 𝒩 𝜇 = 𝜇& +

𝜎&-
𝜎--

a − 𝜇- , 𝜎- = 𝜎&- −
𝜎-&-

𝜎--
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Gaussian marginals does NOT imply jointly 
multivariate Gaussian (converse NOT generally true)

David I. Inouye 12



MLE of multivariate Gaussian can be computed 
via empirical mean and covariance matrix

▸Log-likelihood of multivariate Gaussian (𝜇 = 0)

−
1
2
log Σ −

1
2𝑛
C
$%&

'

𝑥$UΣV&𝑥$ + 𝑐𝑜𝑛𝑠𝑡

▸Three main identities:
▸b cde f

bf
= 𝐴VU

▸Tr 𝑥U𝐴𝑥 = Tr 𝐴𝑥𝑥U

▸bij kl
bm

= 𝐴

▸Hint: Do derivative with respect to ΣV&
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