Density Estimation
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Announcements

> Resubmit HW2 only if you had formatting
mistakes
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Maximum likelihood estimation (MLE) is another way
to estimate distribution parameters from samples

> Likelihood function how likely (or probable) a dataset D =
1%;};=41 1s under a distribution with parameters 6

L(O;D) =p(xy, %5, .., Xy; 0)

> If we assume samples (or observations) of dataset are
independent and identically distributed (iid), then

£6:0) = | [pes6)

» Often simplified to the Iog-likel_ihood function

£(0; D) =log L(O;D)
» Example: Coin flips with Bernoulli
> Non iid example: First flip Bernoulli, then alternating
» Example: Flight delays with exponential distribution
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The likelihood function is a function of parameters 6
as opposed to a density which is a function of x

> Sometimes written £(0; x) = p(x; 0)

> Subtle but important difference with PDF/PMF

> PDF/PMF are functions of x where 4 is fixed
> Likelihood is function of 8 where x is fixed

» Additionally, likelihood function L is usually
product of density functions (if iid)
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Maximum likelihood (MLE) is another way to
estimate distribution parameters from samples

> Optimize the following
0* = arg mQaXL(H;D)

> (Derive negative log likelihood)
» Equivalent to

n
1
0" = arg min —— El logp(x;; 0)
L=

» Wait, doesn’t that look familiar?
> MLE equivalent to minimum KL divergence!
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Example: Estimate Bernoulli parameter p given
many coin flips

»D ={H,T,T,T,H}

n
1
0" = arg min — EZ logp(x;;0)
1=
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Example: Estimate mean parameter A of
exponential distribution

> D ={x1,%X5, ..., X}
»p(x; A1) = Aexp{—1x}
»logp(x;A) = — Ax + log{ll

1
0* = arg min — EZ logp(x;; 0)
1=
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MILE is not always appropriate
and fails in certain important situations

» Corrupt/noisy samples (related to robustness)
» Cashiers using 1111 for birth year: 908 years old
> One star ratings

> Finite (sometimes small) number of samples
> One or two coin flips, Bernoulli
> 1D with one sample, Gaussian
» 2D with two samples, multivariate Gaussian
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Robust estimators of a Gaussian mean can be
computed using median

» Suppose corruption is 30% (e.g., 30% of cashiers
don’t put in correct birth year)

> MILE estimator of Gfussi%n is sample average
: 2
arg min X;

l
» Rather we can use thle median which is:

arg min—z |x; — ul
U n

> (demo) l
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Regularized MLE is a way to handle finite or small
sample sizes

> Maximize likelihood + regularization penalty
arg max £(6;D) — AR(O)

» Often written as minimizing negative likelihood
arg min —£(0; D) + AR(6)

» Concrete example for Gau55|an mean estimation
where g% = 1 and A _E

1
arg mln —f(u; D) + —IIuIIz

1
argmmz > (x — )% +

2#
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The most ubiquitous multivariate distribution is
the multivariate Gaussian distribution

» Compare univariate to multivariate:
> 1L is mean and X is covariance

p(x) = ! eXp{—l(x_M)z}

2102 2 o*
p(xXq, ) Xg)
1 1
= expi—=(x — )7 (x — )
(vV2r) Vdetz { ? }

»® = X1 is called the precision matrix (or inverse covariance)
» ¥ (and ©) must be positive definite X > 0
> (Suppose X = I, suppose u = 0)
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Marginal and conditional distributions are
Gaussian and can be computed in closed-form

» 2D case:

20. |
X = [le xZ] ~ N(H — [:uluuZ];Z — 1T )

021 J22_
> Marginal distributions:
x; ~N(u= H1;U§ = U]i)
X, ~ N =pz,0° = 0y)
» Conditional distributions:
xi|x, = a

2

012 031
~N<u=u1= 7 (@a—pp), 0% =of )
0, 0,




Gaussian marginals does NOT imply jointly
multivariate Gaussian (converse NOT generally true)

o

N
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MILE of multivariate Gaussian can be computed
via empirical mean and covariance matrix

> Log-likelihood of muIt)ilvariate Gaussian (u = 0)

—ElongI ~om. 1 xi %7 1x; + const
l=

» Three main identities:
. d log|A| _ A_T

OA
» Tr(xTAx) = Tr(Axx")
. 0Tr(AX) — 4

X

» Hint: Do derivative with respect to 71




