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Announcements

▸Quiz 4 on Wednesday
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MLE is not always appropriate 
and fails in certain important situations

▸Corrupt/noisy samples (related to robustness)
▸Cashiers using 1111 for birth year: 908 years old
▸One star ratings

▸Finite (sometimes small) number of samples
▸One or two coin flips, Bernoulli
▸1D with one sample, Gaussian
▸2D with two samples, multivariate Gaussian
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Robust estimators of a Gaussian mean can be 
computed using median

▸Suppose corruption is 30% (e.g., 30% of cashiers 
don’t put in correct birth year)
▸MLE estimator of Gaussian is sample average

argmin
'

1
𝑛
*
+

1
2
𝑥+ − 𝜇 0

▸Rather we can use the median which is:
argmin

'

1
𝑛
*
+

|𝑥+ − 𝜇|

▸(demo)
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Regularized MLE is a way to handle finite or small 
sample sizes

▸Maximize likelihood + regularization penalty
argmax

3
ℓ 𝜃;𝒟 − 𝜆𝑅(𝜃)

▸Often written as minimizing negative likelihood
argmin

3
−ℓ 𝜃;𝒟 + 𝜆𝑅(𝜃)

▸Concrete example for Gaussian mean estimation 
where 𝜎0 = 1 and 𝜆 = @

0
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Derivation for regularized 
Gaussian mean estimation

𝐿 𝜇;𝒟, 𝜆 =
1
2

= −ℓ 𝜇;𝒟 + 𝑅 𝜇 =*
+

1
2
𝑥+ − 𝜇 0 +

1
2
𝜇0

𝜕𝐿
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=*
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2
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1
2
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= 𝜇 +*
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𝜇 − 𝑥+ = 𝜇 + 𝑛𝜇 −*
+

𝑥+

𝜕𝐿
𝜕𝜇

= 0 = 1 + 𝑛 𝜇 −*
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𝑛 + 1
*
+
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The most ubiquitous multivariate distribution is 
the multivariate Gaussian/normal distribution

▸Compare univariate to multivariate:
▸𝜇 is mean and Σ is covariance

𝑝 𝑥 =
1

2𝜋 𝜎0
exp −

1
2
𝑥 − 𝜇 0

𝜎0

𝑝 𝑥@, … , 𝑥K

=
1

2𝜋
K
det Σ

exp −
1
2
𝑥 − 𝜇 MΣN@ 𝑥 − 𝜇

▸Θ = ΣN@ is called the precision matrix (or inverse covariance)
▸Σ and Θ must be positive definite Σ > 0
▸(Suppose Σ = 𝐼, suppose 𝜇 = 0)
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Multivariate Gaussian is independent “spherical” 
Gaussian that is rotated and scaled

Σ = 𝑈Λ𝑈M = 𝑈Λ
@
0 Λ

@
0𝑈M = 𝑈Λ

@
0 𝑈Λ

@
0
M

𝑥M 𝑈ΛN
@
0 𝑈ΛN

@
0
M
𝑥 = ΛN

@
0𝑈𝑥

M
ΛN

@
0𝑈𝑥 = 𝑧M𝑧
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Marginal and conditional distributions are 
Gaussian and can be computed in closed-form

▸2D case: 
𝒙 = 𝑥@, 𝑥0 ∼ 𝒩 𝜇 = 𝜇@, 𝜇0 , Σ =

𝜎@0 𝜎@0
𝜎0@ 𝜎00

▸Marginal distributions:
𝑥@ ∼ 𝒩 𝜇 = 𝜇@, 𝜎0 = 𝜎@0
𝑥0 ∼ 𝒩 𝜇 = 𝜇0, 𝜎0 = 𝜎00

▸Conditional distributions:
𝑥@|𝑥0 = 𝑎
∼ 𝒩 𝜇 = 𝜇@ +

𝜎@0
𝜎00

𝑎 − 𝜇0 , 𝜎0 = 𝜎@0 −
𝜎0@0

𝜎00
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Gaussian marginals does NOT imply jointly 
multivariate Gaussian (converse NOT generally true)
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Affine transformations of multivariate Gaussian 
vector are also multivariate Gaussian

▸If 𝑥 ∼ 𝒩(𝜇, Σ) and 𝑦 = 𝐴𝑥 + 𝑏, then
𝑦 ∼ 𝒩 𝐴𝜇 + 𝑏, 𝐴ΣA] .

▸Special case: Marginal distribution when 𝐴 is:
𝐴+ = _ 1, if 𝑖 = 𝑘

0, otherwise
then 𝑦 = 𝑥g ∼ 𝑝 𝑥g .

▸Key point: Marginals, conditionals and affine 
functions known in closed-form.
▸Consequence 1: Easy to manipulate.
▸Consequence 2: Gaussians and linear ideas play 
nicely with each other.
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MLE of multivariate Gaussian can be computed 
via empirical mean and covariance matrix

▸Log-likelihood of multivariate Gaussian (𝜇 = 0)
ℒ Σ;𝒟

=*
+i@

j

−
1
2
𝑥+MΣN@𝑥+ −

1
2
log Σ +

𝑑
2
log 2𝜋

▸Three main identities:
▸m nop q

mq
= 𝐴NM

▸Tr 𝑥M𝐴𝑥 = Tr 𝐴𝑥𝑥M

▸m]s tu
mv

= 𝐴
▸Hint: Do derivative with respect to ΣN@
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Simplification and derivation of MLE for 
multivariate Gaussian

𝐿 Σ;𝒟 =
𝑛
2
log ΣN@ −

1
2
Tr ΣN@ *

+

𝑥+𝑥+M

𝜕𝐿
𝜕ΣN@

=
𝑛
2
Σ −

1
2
*
+

𝑥+𝑥+M

Σ =
1
𝑛
*
+

𝑥+𝑥+M
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