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Announcements

▸Resubmit HW2 since many formatting mistakes

▸Quiz 3
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Density estimation finds a density (PDF/PMF) that 
represents the data (or empirical distribution) well

▸We always make an assumption about a density 
model class often parametrized by 𝜃

▸Assumption: Bernoulli density
𝜃 = 𝑝 , 𝑝 ∈ 0,1

▸Assumption: Exponential density
𝜃 = 𝜆 , 𝜆 ∈ ℝ**

▸Assumption: Gaussian density
𝜃 = 𝜇, 𝜎- , 𝜇 ∈ ℝ, 𝜎- ∈ ℝ**

▸Assumption: DNN-based model
𝜃 = “𝑎𝑙𝑙 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠”
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Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

▸Formally, KL divergence for discrete variables

𝐾𝐿 𝑃 𝑥 , 𝑄(𝑥) = 𝔼D∼F log
𝑃 𝑥
𝑄(𝑥) =J

D

𝑃 𝑥 log
𝑃 𝑥
𝑄(𝑥)

▸Formally, KL divergence for continuous variables

𝐾𝐿 𝑝 𝑥 , 𝑞(𝑥) = 𝔼L∼M log
𝑝 𝑥
𝑞 𝑥 = N

D
𝑝 𝑥 log

𝑝 𝑥
𝑞 𝑥 𝑑𝑥

▸Note: NO negative sign compared to entropy
▸Note: Not symmetric!
▸Non-negative property: 𝐾𝐿 𝑝 𝑥 , 𝑞 𝑥 ≥ 0
▸Equal distribution property: 

𝐾𝐿 𝑝 𝑥 , 𝑞 𝑥 = 0 ⇔ 𝑝(𝑥) = 𝑞(𝑥)
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One use of KL divergence is to estimate 
distribution parameters only from samples

▸Let 𝑝 𝑥 denote the real/true distribution of 
the data
▸𝑝 𝑥 is unknown
▸We only have samples 𝑥R RST

U from 𝑝(𝑥)
▸Let V𝑞 𝑥; 𝜃 denote an estimate of the true 
distribution
▸Parametrized by 𝜃

▸We want to find V𝑞 𝑥; 𝜃 that is closest to 𝑝(𝑥)
𝜃∗ = argmin

^
KL( 𝑝 𝑥 , V𝑞 𝑥; 𝜃 )
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One use of KL divergence is to estimate 
distribution parameters only from samples

▸We want to find V𝑞 𝑥; 𝜃 that is closest to 𝑝(𝑥)
𝜃∗ = argmin

^
KL( 𝑝 𝑥 , V𝑞 𝑥; 𝜃 )

▸Wait, but we don’t know 𝑝(𝑥), how do we do 
this?
▸(Simplify on board)

▸Two main ideas for simplification
▸Constants with respect to (w.r.t.) 𝜃 can be ignored
▸Full expectation replaced by empirical expectation
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Maximum likelihood estimation (MLE) is another way 
to estimate distribution parameters from samples

▸Likelihood function how likely (or probable) a dataset 𝒟 =
𝑥R RSTU is under a distribution with parameters 𝜃

ℒ 𝜃;𝒟 = 𝑝 𝑥T, 𝑥-, … , 𝑥U; 𝜃
▸If we assume samples (or observations) of dataset are 

independent and identically distributed (iid), then

ℒ 𝜃;𝒟 =d
RST

U

𝑝 𝑥R; 𝜃

▸Often simplified to the log-likelihood function
ℓ 𝜃;𝒟 = log ℒ(𝜃;𝒟)

▸Example: Coin flips with Bernoulli
▸Non iid example: First flip Bernoulli, then alternating
▸Example: Flight delays with exponential distribution
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The likelihood function is a function of parameters 𝜃
as opposed to a density which is a function of 𝑥

▸Sometimes written ℒ 𝜽; 𝒙 = 𝑝(𝒙; 𝜽)

▸Subtle but important difference with PDF/PMF
▸PDF/PMF are functions of 𝑥 where 𝜃 is fixed
▸Likelihood is function of 𝜃 where 𝑥 is fixed

▸Additionally, likelihood function ℒ is usually 
product of density functions (if iid)
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