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The Expectation-Maximization (EM) algorithm 
can be seen as a generalization of k-means

▸The EM algorithm for GMM alternates between
▸Probabilistic/soft assignment of points
▸Estimation of Gaussian for each component

▸Similar to k-means which alternates between
▸Hard assignment of points
▸Estimation of mean of points in each cluster
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EM algorithm is guaranteed to increase 
observed likelihood, i.e., ∏" 𝑝$"%&'() 𝑥"
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Observation: If we knew 𝑧", then optimizing the 
complete log likelihood is easy

▸Observed/marginal log likelihood 
(if 𝑧" is unknown)

ℓ 𝜃 = log2
"

3
4

𝑝 𝑧" 𝑝 𝑥" 𝑧"

▸Complete log likelihood (if 𝑧" is known)
ℓ5 𝜃 = log2

"

𝑝(𝑥", 𝑧"; 𝜃) = log2
"

𝜋;<𝑝𝒩 𝑥"; 𝜇;<, Σ;<

▸For GMMs, this is convex and easy to solve
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Derivation of EM iteration for GMM

▸Complete log-likelihood
ℓ5 𝜃 =3

"

log 𝑝 𝑥", 𝑧" 𝜃

▸Expected complete log likelihood
𝑄 𝜃; 𝜃&AB = 𝑄CDEF 𝜃 = 𝔼𝒛…|𝒙…,CDEF ℓ5 𝜃

▸NOTE: Q is a function of 𝜃 given the previous parameter value 𝜃&AB

▸Let’s write the joint density of 𝑥 and 𝑧 as:

𝑝 𝑥", 𝑧" 𝜃 =2
4

𝜋4𝑝 𝑥" 𝜃4
L(;<M4)

▸𝐼 𝑧" = 𝑗 is an indicator function that is 1 if the inside expression is 
true or 0 otherwise

▸See 11.22-11.26 pp. 351 of [ML] for derivation
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Proof that it monotonically increases likelihood

▸See 11.4.7 in [ML] for full derivation of proof
▸Show that 𝑄 𝜃; 𝑞& is lower bound observed 
likelihood ℓ 𝜃 , i.e., ℓ 𝜃 ≥ 𝑄 𝜃; 𝑞& , ∀𝜃
▸Choose 𝑞& 𝑧" = 𝑝 𝑧" 𝑥", 𝜃& , which 
corresponds to 𝑄 𝜃; 𝜃&
▸Show that lower bound is tight at 𝜃&
▸Combine three concepts

1. Lower bound inequality
2. Maximization inequality
3. Tightness of lower bound
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