Gaussian Mixture Models (GMM)

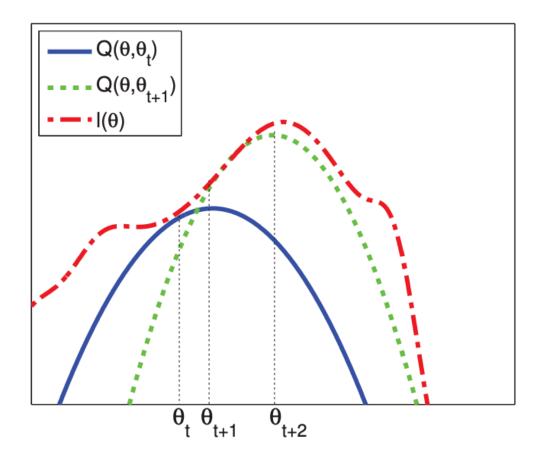
ECE57000: Artificial Intelligence, Fall 2019

David I. Inouye

The Expectation-Maximization (EM) algorithm can be seen as a generalization of k-means

- The EM algorithm for GMM alternates between
 - Probabilistic/soft assignment of points
 - Estimation of Gaussian for each component
- Similar to k-means which alternates between
 - Hard assignment of points
 - Estimation of mean of points in each cluster

EM algorithm is **guaranteed** to increase **observed** likelihood, i.e., $\prod_i p_{mixture}(x_i)$



Observation: If we knew z_i , then optimizing the complete log likelihood is easy

Observed/marginal log likelihood (if z_i is unknown)

$$\ell(\theta) = \log \prod_{i} \left(\sum_{j} p(z_i) p(x_i | z_i) \right)$$

- Complete log likelihood (if z_i is **known**) $\ell_c(\theta) = \log \prod_i p(x_i, z_i; \theta) = \log \prod_i \pi_{z_i} p_{\mathcal{N}}(x_i; \mu_{z_i}, \Sigma_{z_i})$ • For GMMs, this is convex and easy to solve
 - For GMMs, this is convex and easy to solve

Derivation of EM iteration for GMM

• Complete log-likelihood $\ell_c(\theta) = \sum_i \log p(x_i, z_i | \theta)$

Expected complete log likelihood

$$Q(\theta; \theta^{t-1}) = Q_{\theta^{t-1}}(\theta) = \mathbb{E}_{\mathbf{z}_{\dots}|\mathbf{x}_{\dots}, \theta^{t-1}}[\ell_{c}(\theta)]$$

NOTE: Q is a function of θ given the previous parameter value θ^{t-1}
Let's write the joint density of x and z as:

$$p(x_i, z_i | \theta) = \prod_{i=1}^{I} \left(\pi_j p(x_i | \theta_j) \right)^{I(z_i = j)}$$

• $I(z_i = j)$ is an indicator function that is 1 if the inside expression is true or 0 otherwise

See 11.22-11.26 pp. 351 of [ML] for derivation

Proof that it monotonically increases likelihood

- See 11.4.7 in [ML] for full derivation of proof
- Show that $Q(\theta; q^t)$ is lower bound observed likelihood $\ell(\theta)$, i.e., $\ell(\theta) \ge Q(\theta; q^t)$, $\forall \theta$
- Choose $q^t(z_i) = p(z_i|x_i, \theta^t)$, which corresponds to $Q(\theta; \theta^t)$
- Show that lower bound is tight at θ_t
- Combine three concepts
 - 1. Lower bound inequality
 - 2. Maximization inequality
 - 3. Tightness of lower bound