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The Expectation-Maximization (EM) algorithm
can be seen as a generalization of k-means

> The EM algorithm for GMM alternates between
> Probabilistic/soft assignment of points
» Estimation of Gaussian for each component

» Similar to k-means which alternates between

» Hard assignment of points
» Estimation of mean of points in each cluster
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EM algorithm is guaranteed to increase
observed likelihood, i.e., [ 1; Pmixture (Xi)
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Observation: If we knew z;, then optimizing the
complete log likelihood is easy

» Observed/marginal log likelihood
(if z; is unknown)

@) = tog] [ (2, paopttz)
L J

> Complete log likelihood (if z; is known)
2:(6) =log | | pCri,2:0) = log | | mopa (xis a3,
L [

» For GMMs, this is convex and easy to solve
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Derivation of EM iteration for GMM

» Complete log-likelihood

£:(6) = ) logp(x,16)

> Expected complete log Iikellihood
Q(8;0'™)) = Qge-1(8) = E, 1, ge-1[€,(6)]

» NOTE: Q is a function of 8 given the previous parameter value 6¢~1
> Let’s write the joint density of x and z as:

p(x;, 2;|0) = l_[ (njp(xi‘ej))I(Zi:j)

» I(z; = j) is an indicator function that is 1 if the inside expression is
true or O otherwise

> See 11.22-11.26 pp. 351 of [ML] for derivation
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Proof that it monotonically increases likelihood

> See 11.4.7 in [ML] for full derivation of proof

> Show that Q(8; g*) is lower bound observed
likelihood £(8), i.e., £(8) = Q(6; q*), VO

> Choose g (z;) = p(z;|x;,8%), which
corresponds to Q(6; 8%)

> Show that lower bound is tight at 6,

> Combine three concepts
1. Lower bound inequality
2. Maximization inequality
3. Tightness of lower bound
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