Gaussian Mixture Models
(GMM)

ECE57000: Artificial Intelligence, Fall 2019

David I. Inouye

David I. Inouye 0]



Gaussian mixture models (GMM) can be used for
(1) density estimation and (2) flexible clustering

1. General density estimation
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https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html
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Even if each component distribution is independent,
the mixture may not be independent

> Formally, pj(x; Wi, X = szl),‘v’j e{1,..,k}
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Gaussian mixture models (GMM) can be used for
(1) density estimation and (2) flexible clustering

2. Flexible clustering

https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html
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Mixture distributions are weighted averages of
component distributions

» Mixture distribution

» Component weights 0 < 7;, < 1s.t. Y% =1

j=1T
> Component distributions p; (x)

> Simple form of mixture .

Pmixture (x) = z TP, (x)

j=1
> (check that integrates to 1)
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Mixture models can be viewed as
latent (or “hidden”) variable models

> Simple form of mixture k

Pmixture (X) = z Tipj (x)
j=1
» Note that T form a discrete distribution

> Let z € {1, ..., k} be an auxiliary indicator variable that
denotes which component the point is from

> Let p(z = j) = m;, then the joint density model is:
p(x,z) = p(2)p(x|2)

» Because z are unobserved, we need the marginal distribution
of x

Pmixture (X) = Z p(x,z=j) = Z p(z =jpxlz = j)
j j
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Gaussian mixture models (GMM) are one of the
most common mixture distributions

» Form of Gaussian mixture model
k k

pemm(X) = Eﬂjpw(xi ui, %) = zP(Z = Don(x;z = j)

Jj=1 Jj=1

Machine
Learning,
Murphy, T R R T T
2012. (a) (b)

Figure 11.3 A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each
component in the mixture. (b) A surface plot of the overall density. Based on Figure 2.23 of (Bishop 2006a).
Figure generated by mixGaussPlotDemo.
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MLE for mixtures is difficult
Reason 1: The algebraic form is more complex

» The mixture log likelihood cannot be simplified

arg max log pGMM(xi; Uiy - Uk, 21, ""Zk)
TL',[,I,]',Z]' ;

z log pGMM(xi; U1y -y Uk Zl! ey Zk)

;
zlogz p(z; = PDon (x5 2z =)
i j1 T 1
2 logz: Tj eXp {— B (i = wy) 70 — ) — > log |Zj|}
I J

> Cannot exchange log and summation to cancel exp
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MLE for mixtures is difficult
Reason 2: Problem is non-convex
(and could have multiple local optima)

> The intuition is similar to the problem with k-
means clustering

Objective = 526.494
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See [ML, Ch. 11, pp. 347-348] for more detailed analysis.
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Observation: If we knew z;, then optimizing the
complete log likelihood is easy

» Observed/marginal log likelihood
(if z; is unknown)

log 1_[ (Z p(z)p(x; |Zi)>
i J

> Complete log likelihood (if z; is known)
log 1_[ p(x;,z;; 0) = log 1_[ P (X5 iz 2z,
i i

> For GMMs, this is convex and easy to solve
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The Expectation-Maximization (EM) algorithm
can be seen as a generalization of k-means

> The EM algorithm for GMM alternates between
> Probabilistic/soft assignment of points
» Estimation of Gaussian for each component

» Similar to k-means which alternates between

» Hard assignment of points
» Estimation of mean of points in each cluster




EM Algorithm: Initialization
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Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM Algorithm: Iteration 1 and 3

lteration 1 lteration 3

Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM Algorithm: Iteration 5 and 16

Iteration 5

Machine Learning: A probabilistic perspective, Murphy, 2012.
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Iteration 16




EM algorithm is guaranteed to increase
observed likelihood, i.e., [ 1; Pmixture (Xi)

et 9t+1 et+2
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