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Gaussian mixture models (GMM) can be used for 
(1) density estimation and (2) flexible clustering

1. General density estimation
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https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html


Even if each component distribution is independent, 
the mixture may not be independent

▸Formally, 𝑝" 𝑥; 𝜇", Σ = 𝜎"*𝐼 , ∀𝑗 ∈ 1, … , 𝑘
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Gaussian mixture models (GMM) can be used for 
(1) density estimation and (2) flexible clustering

2. Flexible clustering
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Mixture distributions are weighted averages of 
component distributions

▸Mixture distribution
▸Component weights 0 ≤ 𝜋", ≤ 1 s. t. ∑"9:; 𝜋" = 1
▸Component distributions 𝑝" 𝑥

▸Simple form of mixture

𝑝<=>?@AB 𝑥 =C
"9:

;

𝜋"𝑝" 𝑥

▸(check that integrates to 1)
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Mixture models can be viewed as
latent (or “hidden”) variable models

▸Simple form of mixture
𝑝<=>?@AB 𝑥 =C

"9:

;

𝜋"𝑝" 𝑥

▸Note that 𝜋" form a discrete distribution
▸Let 𝑧 ∈ {1, … , 𝑘} be an auxiliary indicator variable that 

denotes which component the point is from
▸Let 𝑝 𝑧 = 𝑗 = 𝜋", then the joint density model is:

𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑝 𝑥 𝑧
▸Because 𝑧 are unobserved, we need the marginal distribution 

of 𝑥

𝑝<=>?@AB 𝑥 =C
"

𝑝 𝑥, 𝑧 = 𝑗 =C
"

𝑝 𝑧 = 𝑗 𝑝 𝑥 𝑧 = 𝑗
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Gaussian mixture models (GMM) are one of the 
most common mixture distributions

▸Form of Gaussian mixture model

𝑝GHH 𝑥 =C
"9:

;

𝜋"𝑝𝒩 𝑥; 𝜇", Σ" =C
"9:

;

𝑝 𝑧 = 𝑗 𝑝𝒩 𝑥; 𝑧 = 𝑗
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Machine 
Learning, 
Murphy, 
2012.



MLE for mixtures is difficult 
Reason 1: The algebraic form is more complex

▸The mixture log likelihood cannot be simplified

arg m𝑎𝑥
O,PQ,RQ

logU
V

𝑝GHH(𝑥V; 𝜇:, … , 𝜇;, Σ:, … , Σ;)

C
V

log 𝑝GHH(𝑥V; 𝜇:, … , 𝜇;, Σ:, … , Σ;)

C
V

logC
"

𝑝 𝑧V = 𝑗 𝑝𝒩 𝑥V; 𝑧V = 𝑗

C
V

logC
"

𝜋" exp −
1
2
𝑥V − 𝜇"

^Σ"_: 𝑥V − 𝜇" −
1
2
log |Σ"|

▸Cannot exchange 𝐥𝐨𝐠 and summation to cancel 𝐞𝐱𝐩
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MLE for mixtures is difficult 
Reason 2: Problem is non-convex 
(and could have multiple local optima)

▸The intuition is similar to the problem with k-
means clustering
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See [ML, Ch. 11, pp. 347-348] for more detailed analysis.



Observation: If we knew 𝑧V, then optimizing the 
complete log likelihood is easy

▸Observed/marginal log likelihood 
(if 𝑧V is unknown)

logU
V

C
"

𝑝 𝑧V 𝑝 𝑥V 𝑧V

▸Complete log likelihood (if 𝑧V is known)

logU
V

𝑝(𝑥V, 𝑧V; 𝜃) = logU
V

𝜋"𝑝𝒩 𝑥V; 𝜇hi, Σhi

▸For GMMs, this is convex and easy to solve
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The Expectation-Maximization (EM) algorithm 
can be seen as a generalization of k-means

▸The EM algorithm for GMM alternates between
▸Probabilistic/soft assignment of points
▸Estimation of Gaussian for each component

▸Similar to k-means which alternates between
▸Hard assignment of points
▸Estimation of mean of points in each cluster
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EM Algorithm: Initialization
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Machine Learning: A probabilistic perspective, Murphy, 2012.



EM Algorithm: Iteration 1 and 3
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Machine Learning: A probabilistic perspective, Murphy, 2012.



EM Algorithm: Iteration 5 and 16
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Machine Learning: A probabilistic perspective, Murphy, 2012.



EM algorithm is guaranteed to increase 
observed likelihood, i.e., ∏V 𝑝kVlmnop 𝑥V
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