Optimization

ECE57000: Artificial Intelligence, Fall 2019 David I. Inouye

Announcements

- Office hours tomorrow (Thurs) moved to 1:30 2:30pm on Friday (right after class)
 - Apologies for the late notice!
 - May add an extra hour next week if needed

EM algorithm is **guaranteed** to increase **observed** likelihood, i.e., $\prod_i p_{mixture}(x_i)$

Proof that it monotonically increases likelihood

- See 11.4.7 in [ML] for full derivation of proof
- Show that $Q(\theta; q^t)$ is lower bound observed likelihood $\ell(\theta)$, i.e., $\ell(\theta) \ge Q(\theta; q^t)$, $\forall \theta$
- Choose $q^t(z_i) = p(z_i|x_i, \theta^t)$, which corresponds to $Q(\theta; \theta^t)$
- Show that lower bound is tight at θ_t
- Combines three concepts
 - 1. Lower bound inequality (Jensen's inequality)
 - 2. Maximization inequality (M-step)
 - 3. Tightness of lower bound (E-step)

Most AI/ML optimizations must be numerically estimated rather than closed-form

- EM algorithm
 - Powerful probabilistic algorithm for hidden/latent variables or missing data
 - Quite general alternating optimization algorithm
 - Can be slow and can get stuck in local minima
- Gradient descent
 - Stochastic gradient descent
 - Primary current algorithm for deep learning
 - Can handle very high dimensions
 - Only works under certain conditions
- (Later) Sampling-based optimization (MCMC/Gibbs)

Vanilla gradient descent has very simple form

Loss function denoted by L(θ; D):
 arg min L(θ; D)

1. Start at random parameter, e.g., $\theta^0 \sim \mathcal{N}(0, 1)$

2. Iteratively update parameter via <u>negative</u> <u>gradient</u> of loss function (η_t is step size or

$$\theta^{t+1} = \theta^t - \eta_t \nabla_\theta \mathcal{L}(\theta^t)$$

 η_t is learning rate (or step size)

Stochastic gradient descent (SGD) merely uses one sample in the gradient calculation

- The loss function can usually be split into a summation of losses $\ell(\theta; x_i)$ for each sample x_i : $\mathcal{L}(\theta; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; x_i)$
- SGD approximates the full gradient by the gradient of a single sample
 - $\nabla_{\theta} \mathcal{L}(\theta^{t}; \mathcal{D}) \approx \nabla_{\theta} \ell(\theta^{t}; x_{i})$
 - Theoretically, $\mathbb{E}_i[\nabla_{\theta} \ell(\theta^t; x_i)] = \nabla_{\theta} \mathcal{L}(\theta^t; \mathcal{D})$

► Loop through all $x_i \in \mathcal{D}$ $\theta^{t+1} = \theta^t - \eta_t \nabla_\theta \ell(\theta^t; x_i)$

- One pass through dataset
 - GD: 1 large update with O(n) cost
 - SGD: n smaller updates with O(1) cost each

Mini-batch SGD (or just SGD) uses a small batch of samples in the gradient calculation

- Mini-batch SGD approximates the full gradient by the gradient of a batch of samples
 - Sample mini-batch

$$\theta^{t+1} = \theta^t - \eta_t \sum_{k=1}^b \frac{1}{b} \nabla_\theta \ell(\theta^t; x_k)$$

- One pass through dataset
 - ► GD: 1 large update
 - ► SGD: *n* smaller updates
 - Mini-batch SGD: $\frac{n}{b}$ medium-size updates

Learning rate / step size is critical for convergence and correctness of algorithm

- If learning rate is too high, the algorithm could diverge.
 - Diverge means to actually get farther away from the solution.
- If learning rate too low, the algorithm could take a very long time to converge.
- Adaptive learning rates may help (but not always)
 - Decreasing step size, $\eta_t = \frac{1}{t}$
 - ADAM Adaptive Moment Estimation

Parameter initialization can be important if non-convex or step size incorrect

- If convex function, initial parameter θ^0 will not affect final optimization result $\hat{\theta} = \operatorname{argmin} \mathcal{L}(\theta)$.
 - ► Yay!
 - (Assuming appropriate step size.)
- If *non-convex*, starting position <u>WILL</u> affect final converged $\hat{\theta}$.
 - Sad day.
 - But sometimes it's not too bad in practice.

Demo using PyTorch to automatically compute gradients

- Nice introductory PyTorch tutorial
 - https://towardsdatascience.com/understandingpytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e