
Optimization
ECE57000: Artificial Intelligence, Fall 2019

David I. Inouye

David I. Inouye 0



Announcements

▸Office hours tomorrow (Thurs) moved to 1:30-
2:30pm on Friday (right after class)
▸Apologies for the late notice!
▸May add an extra hour next week if needed

David I. Inouye 1



EM algorithm is guaranteed to increase 
observed likelihood, i.e., ∏" 𝑝$"%&'() 𝑥"

David I. Inouye 2



Proof that it monotonically increases likelihood

▸See 11.4.7 in [ML] for full derivation of proof
▸Show that 𝑄 𝜃; 𝑞& is lower bound observed 
likelihood ℓ 𝜃 , i.e., ℓ 𝜃 ≥ 𝑄 𝜃; 𝑞& , ∀𝜃
▸Choose 𝑞& 𝑧" = 𝑝 𝑧" 𝑥", 𝜃& , which 
corresponds to 𝑄 𝜃; 𝜃&
▸Show that lower bound is tight at 𝜃&
▸Combines three concepts

1. Lower bound inequality (Jensen’s inequality)
2. Maximization inequality (M-step)
3. Tightness of lower bound (E-step)

David I. Inouye 3



Most AI/ML optimizations must be numerically 
estimated rather than closed-form

▸EM algorithm
▸Powerful probabilistic algorithm for hidden/latent variables or 

missing data
▸Quite general alternating optimization algorithm
▸Can be slow and can get stuck in local minima

▸Gradient descent
▸Stochastic gradient descent
▸Primary current algorithm for deep learning
▸Can handle very high dimensions
▸Only works under certain conditions

▸(Later) Sampling-based optimization (MCMC/Gibbs)

David I. Inouye 4



Vanilla gradient descent has very simple form

▸Loss function denoted by ℒ 𝜃;𝒟 :
argmin

=
ℒ 𝜃;𝒟

1. Start at random parameter, e.g., 𝜃> ∼ 𝒩 0, 1

2. Iteratively update parameter via negative 
gradient of loss function (𝜂& is step size or 

𝜃&DE = 𝜃& − 𝜂&∇=ℒ 𝜃&
▸𝜂& is learning rate (or step size)

David I. Inouye 5



Stochastic gradient descent (SGD) merely uses 
one sample in the gradient calculation

▸The loss function can usually be split into a 
summation of losses ℓ 𝜃; 𝑥" for each sample 𝑥": 
ℒ 𝜃;𝒟 = E

H
∑"JEH ℓ 𝜃; 𝑥"

▸SGD approximates the full gradient by the gradient 
of a single sample
▸∇=ℒ 𝜃&; 𝒟 ≈ ∇=ℓ 𝜃&; 𝑥"
▸Theoretically, 𝔼" ∇=ℓ 𝜃&; 𝑥" = ∇=ℒ 𝜃&; 𝒟

▸Loop through all 𝑥" ∈ 𝒟
𝜃&DE = 𝜃& − 𝜂&∇=ℓ 𝜃&; 𝑥"

▸One pass through dataset
▸GD: 1 large update with 𝑂 𝑛 cost
▸SGD: 𝑛 smaller updates with 𝑂 1 cost each

David I. Inouye 6



Mini-batch SGD (or just SGD) uses a small batch 
of samples in the gradient calculation

▸Mini-batch SGD approximates the full gradient 
by the gradient of a batch of samples
▸Sample mini-batch

𝜃&DE = 𝜃& − 𝜂& P
QJE

R
1
𝑏
∇=ℓ 𝜃&; 𝑥Q

▸One pass through dataset
▸GD: 1 large update
▸SGD: 𝑛 smaller updates
▸Mini-batch SGD: H

R
medium-size updates

David I. Inouye 7



Learning rate / step size is critical for 
convergence and correctness of algorithm

▸If learning rate is too high, the algorithm could 
diverge. 
▸Diverge means to actually get farther away from the 

solution.
▸If learning rate too low, the algorithm could 
take a very long time to converge.
▸Adaptive learning rates may help (but not 
always)
▸Decreasing step size, 𝜂& =

E
&

▸ADAM – Adaptive Moment Estimation

David I. Inouye 8



Parameter initialization can be important 
if non-convex or step size incorrect

▸If convex function, initial parameter 𝜃> will not 
affect final optimization result T𝜃 = argmin

=
ℒ(𝜃).

▸Yay!
▸(Assuming appropriate step size.)

▸If non-convex, starting position WILL affect final 
converged T𝜃.
▸Sad day.
▸But sometimes it’s not too bad in practice.

David I. Inouye 9



Demo using PyTorch to automatically
compute gradients

▸Nice introductory PyTorch tutorial
▸https://towardsdatascience.com/understanding-

pytorch-with-an-example-a-step-by-step-tutorial-
81fc5f8c4e8e

David I. Inouye 10

https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e

