Optimization

ECE57000: Artificial Intelligence, Fall 2019
David I. Inouye
Announcements

▸ Office hours tomorrow (Thurs) moved to 1:30-2:30pm on Friday (right after class)
 ▸ Apologies for the late notice!
 ▸ May add an extra hour next week if needed
EM algorithm is **guaranteed** to increase observed likelihood, i.e., $\prod_i p_{\text{mixture}}(x_i)$
Proof that it monotonically increases likelihood

- See 11.4.7 in [ML] for full derivation of proof
- Show that $Q(\theta; q^t)$ is lower bound observed likelihood $\ell(\theta)$, i.e., $\ell(\theta) \geq Q(\theta; q^t), \forall \theta$
- Choose $q^t(z_i) = p(z_i|x_i, \theta^t)$, which corresponds to $Q(\theta; \theta^t)$
- Show that lower bound is tight at θ_t
- Combines three concepts
 1. Lower bound inequality (Jensen’s inequality)
 2. Maximization inequality (M-step)
 3. Tightness of lower bound (E-step)
Most AI/ML optimizations must be numerically estimated rather than closed-form

- EM algorithm
 - Powerful probabilistic algorithm for hidden/latent variables or missing data
 - Quite general alternating optimization algorithm
 - Can be slow and can get stuck in local minima

- Gradient descent
 - Stochastic gradient descent
 - Primary current algorithm for deep learning
 - Can handle very high dimensions
 - Only works under certain conditions

- (Later) Sampling-based optimization (MCMC/Gibbs)
Vanilla gradient descent has very simple form

- Loss function denoted by $\mathcal{L}(\theta; \mathcal{D})$:
 \[
 \arg\min_\theta \mathcal{L}(\theta; \mathcal{D})
 \]

1. Start at random parameter, e.g., $\theta^0 \sim \mathcal{N}(0, 1)$

2. Iteratively update parameter via **negative gradient** of loss function (η_t is step size or

 $\theta^{t+1} = \theta^t - \eta_t \nabla_\theta \mathcal{L}(\theta^t)$

 - η_t is **learning rate** (or **step size**)
Stochastic gradient descent (SGD) merely uses one sample in the gradient calculation

- The loss function can usually be split into a summation of losses $\ell(\theta; x_i)$ for each sample x_i:
 $$
 \mathcal{L}(\theta; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; x_i)
 $$

- SGD approximates the full gradient by the gradient of a single sample
 $$
 \nabla_{\theta} \mathcal{L}(\theta^t; \mathcal{D}) \approx \nabla_{\theta} \ell(\theta^t; x_i)
 $$
 Theoretically, $\mathbb{E}_i [\nabla_{\theta} \ell(\theta^t; x_i)] = \nabla_{\theta} \mathcal{L}(\theta^t; \mathcal{D})$

- Loop through all $x_i \in \mathcal{D}$
 $$
 \theta^{t+1} = \theta^t - \eta_t \nabla_{\theta} \ell(\theta^t; x_i)
 $$

- One pass through dataset
 - GD: 1 large update with $O(n)$ cost
 - SGD: n smaller updates with $O(1)$ cost each
Mini-batch SGD (or just SGD) uses a small batch of samples in the gradient calculation

- **Mini-batch SGD** approximates the full gradient by the gradient of a batch of samples
 - Sample mini-batch
 \[
 \theta^{t+1} = \theta^t - \eta_t \sum_{k=1}^{b} \frac{1}{b} \nabla_{\theta} \ell(\theta^t; x_k)
 \]

- One pass through dataset
 - GD: 1 large update
 - SGD: \(n \) smaller updates
 - Mini-batch SGD: \(\frac{n}{b} \) medium-size updates
Learning rate / step size is critical for convergence and correctness of algorithm

- If learning rate is **too high**, the algorithm could diverge.
 - Diverge means to actually get farther away from the solution.
- If learning rate **too low**, the algorithm could take a very long time to converge.
- Adaptive learning rates may help (**but not always**)
 - Decreasing step size, $\eta_t = \frac{1}{t}$
 - ADAM – Adaptive Moment Estimation
Parameter initialization can be important if non-convex or step size incorrect

- If convex function, initial parameter θ^0 **will not** affect final optimization result $\hat{\theta} = \operatorname{argmin}_\theta \mathcal{L}(\theta)$.
 - Yay!
 - (Assuming appropriate step size.)

- If *non-convex*, starting position **WILL** affect final converged $\hat{\theta}$.
 - Sad day.
 - But sometimes it’s not too bad in practice.
Demo using PyTorch to automatically compute gradients

- Nice introductory PyTorch tutorial