Optimization

ECE57000: Artificial Intelligence, Fall 2019

David I. Inouye

David I. Inouye 0]

Announcements

» Office hours tomorrow (Thurs) moved to 1:30-
2:30pm on Friday (right after class)

> Apologies for the late notice!

> May add an extra hour next week if needed

David I. Inouye 1

EM algorithm is guaranteed to increase
observed likelihood, i.e., [1; Pmixture (Xi)

et 9t+1 et+2

David I. Inouye 2

Proof that it monotonically increases likelihood

> See 11.4.7 in [ML] for full derivation of proof

> Show that Q(8; g*) is lower bound observed
likelihood £(8), i.e., £(8) = Q(6; q*), VO

> Choose g (z;) = p(z;|x;,8%), which
corresponds to Q(6; 8%)

> Show that lower bound is tight at 6,

> Combines three concepts
1. Lower bound inequality (Jensen’s inequality)
2. Maximization inequality (M-step)
3. Tightness of lower bound (E-step)

David I. Inouye 3

Most Al/ML optimizations must be numerically
estimated rather than closed-form

> EM algorithm

> Powerful probabilistic algorithm for hidden/latent variables or
missing data

> Quite general alternating optimization algorithm
> Can be slow and can get stuck in local minima

> Gradient descent
» Stochastic gradient descent
> Primary current algorithm for deep learning
» Can handle very high dimensions
> Only works under certain conditions

> (Later) Sampling-based optimization (MCMC/Gibbs)

David I. Inouye 4

Vanilla gradient descent has very simple form

> Loss function denoted by L(6;D):
arg mgin L(8;D)

1. Start at random parameter, e.g., 8° ~ N (0,1)

2. lteratively update parameter via negative
gradient of loss function (n; is step size or

= 0" —n,VgL(6")

> 71, is learning rate (or step size)

David I. Inouye 5

Stochastic gradient descent (SGD) merely uses
one sample in the gradient calculation

> The loss function can usually be split into a

summation of losses £(0; x;) for each sample x;:

L(6;D) =~ 2=, £(6; x;)
» SGD approximates the full gradient by the gradient
of a single sample

» Vg L(8%;D) = Vgt(6°; x;)

> Theoretically, E;[Vy£(0%; x;)] = VoL(6%; D)
> Loop through all x; € D

= 0" =1, Vgt (8" x;)

> One pass through dataset

» GD: 1 large update with O(n) cost
» SGD: n smaller updates with O(1) cost each

David I. Inouye 6

Mini-batch SGD (or just SGD) uses a small batch
of samples in the gradient calculation

> Mini-batch SGD approximates the full gradient
by the gradient of a batch of samples
> Sample mini-batch

b
=0 —n zlv 2(0%; x;,)
t b 6 » Mk

k=1

> One pass through dataset
» GD: 1 large update
» SGD: n smaller updates

> Mini-batch SGD: % medium-size updates

David I. Inouye 7

Learning rate / step size is critical for
convergence and correctness of algorithm

> If learning rate is too high, the algorithm could
diverge.

> Diverge means to actually get farther away from the
solution.

> If learning rate too low, the algorithm could
take a very long time to converge.

> Adaptive learning rates may help (but not
always)

> Decreasing step size, ny = %

> ADAM — Adaptive Moment Estimation

David I. Inouye 8

Parameter initialization can be important
if non-convex or step size incorrect

> If convex function, initial parameter 8° will not
affect final optimization result 8 = argm@in L(O).

> Yay!
» (Assuming appropriate step size.)

> If non-convex, starting position WILL affect final
converged 6.

> Sad day.
> But sometimes it’s not too bad in practice.

David I. Inouye 9

Demo using PyTorch to automatically
compute gradients

> Nice introductory PyTorch tutorial

» https://towardsdatascience.com/understanding-
pytorch-with-an-example-a-step-by-step-tutorial-
81fc5f8c4e8e

https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e

