
ECE 57000 Assignment 3 Instructions

Instructions
This Jupyter notebook document entitled Assignment_03_Instructions contains instructions for
doing your assignment exercise. A second Jupyter notebook document entited
Assignment_03_Exercise contains all the exercises that you will need to perform.

As you read each section of this instruction, you should try running the associated code snippets.
The colaboratory environment allows you to run code snippets locally by clicking on the arrow on
the left of the code. This is a wonderful feature that allows you to experiment as you read. You
should take advantage of this and experiment and test different ideas, so you can become more
familiar with the Python and the Jupyter programing environment.

At the end of each sub-section, there will be exercises to perform. You should perform the
exercises in the document Assignment_03_Exercise, which will contain all your results. You can
then hand in your results by printing the Assignment_03_Exercise document as a pdf with all code
and simulation results included.

Section 1: Introduction to Pytorch tensor
In this assignment, we will try to build a classifier by using neural network.
Python offers a lot of packages for machine learning, such as Keras, Tensorflow, Pytorch and etc.
In this course, we will focus on Pytorch. Pytorch is a popular ML library in Python and is
implemented in C and wrapped with Lua. It is developed by Facebook, but now it is widely used in
companies such as Twitter, Salesforce.

One of Pytorch's greatest feature is that it offers Tensor Computation. It works just like Numpy,
but has faster computation and allows for GPU acceleration.



In [26]:

-----------Tensor Initialization----------- 
Zero initialization for A:  
A=tensor([[0., 0.], 
        [0., 0.]]) 
 
normal distributrion initialization for A:  
A=tensor([[ 0.5742, -0.8597], 
        [-1.2621, -1.3017]]) 
 
-----------   Tensor Addition    ----------- 
Tensor A is tensor([1, 2, 3]), Tensor B is tensor([3, 2, 1]) 
Tensor addition:  
A+B=tensor([4, 4, 4]) 
 
-----------Tensor Initialization----------- 
A is defined as  
tensor([[1., 1., 1.], 
        [1., 1., 1.], 
        [1., 1., 1.]]) 
 
The first element : 
1.0 
 
The first two columns : 
tensor([[1., 1.], 

import torch

print(f'-----------Tensor Initialization-----------')
# Tensor initilization
A = torch.zeros(2,2)
print(f'Zero initialization for A: \nA={A}\n')

A = torch.randn(2,2)
print(f'normal distributrion initialization for A: \nA={A}\n')

print(f'-----------   Tensor Addition    -----------')
# Tensor addition
A, B = [1,2,3], [3,2,1]
A, B = torch.tensor(A), torch.tensor(B)
print(f'Tensor A is {A}, Tensor B is {B}')
print(f'Tensor addition: \nA+B={A+B}\n')

print(f'-----------Tensor Initialization-----------')
# Tensor indexing and slicing
A = torch.ones(3,3)
print(f'A is defined as \n{A}\n')
print(f'The first element :\n{A[0,0]}\n')
print(f'The first two columns :\n{A[:,0:2]}\n')

print(f'-----------  Tensor Information-----------')
# Tensor information
A = torch.rand(3,3)
print(f'A has shape: \n{A.size()}\n')
print(f'A has datatype: \n{A.dtype}\n')
print(f'A is stored as: \n{A.type()}\n')



For more information, please refer to the Pytorch official tutorial : Pytorch Tutorial
(https://pytorch.org/tutorials/beginner/nlp/pytorch_tutorial.html)

Section 2: Getting datasets from torchvision
Instead of uploading/creating datasets on your own, torchvision offers some popular datasets
which is available for download only by writing a few lines of code. The avaliable datasets are
MNIST, FMNIST, LSUN, CIFAR, etc. More information on the dataset is available here: Torchvision
dataset (https://pytorch.org/docs/stable/torchvision/datasets.html)
In this assignment, we will use the MNIST dataset. MNIST is a large dataset of handwritten digits.
The dataset contains 60,000 train images and 10,000 testing images. Each image is in gray scale
and has the size 28x28.

There are several parameters when you trying to get MNIST data from torchvision by using the
function torchvision.dataset.MNIST() :

train : This parameter indicates whether you want the training set or the testing set
download: Set True to start download from the website
transform: pre-processing functions for the dataset

Here is a typical setup:

        [1., 1.], 
        [1., 1.]]) 
 
-----------  Tensor Information----------- 
A has shape:  
torch.Size([3, 3]) 
 
A has datatype:  
torch.float32 
 
A is stored as:  
torch.FloatTensor 
 

https://pytorch.org/tutorials/beginner/nlp/pytorch_tutorial.html
https://pytorch.org/docs/stable/torchvision/datasets.html


In [27]:

Then we need to set up a getter for the dataset by using the function 
torch.utils.data.DataLoader() , some parameters is given as:

batch_size: how many datasets you want each time
shuffle: whether the extracted data are shuffled from the dataset

In [28]:

Here the train_loader/test_loader is an iterable, we can extract by using the python built-in function 
next()

Dataset MNIST 
    Number of datapoints: 60000 
    Root location: /data 
    Split: Train 
    StandardTransform 
Transform: Compose( 
               ToTensor() 
               Normalize(mean=(0.1307,), std=(0.3081,)) 
           ) 

<torch.utils.data.dataloader.DataLoader object at 0x7f79967ae358> 

import torchvision

"""
Here the transform is a pipeline containing two seperate transforms: 
1. Transform the data into tensor type
2. Normalize the dataset by a giving mean and std. 
  (Those number is given as the global mean and standard deviation of MNIST
"""
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor
                      torchvision.transforms.Normalize((0.1307,),(0.3081,))

train_dataset = torchvision.datasets.MNIST('/data', train=True, download=Tr
test_dataset = torchvision.datasets.MNIST('/data', train=False, download=Tr

print(train_dataset)

batch_size_train, batch_size_test = 64, 1000

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_si

print(train_loader)



In [29]:

Important Note: In pytoch, image files are stored in the format of (Batchsize x Channel x Height x
Width)
We can visualize the first few images and its associated labels like this:

current batch index is 0 
images has shape torch.Size([64, 1, 28, 28]) 
targets has shape torch.Size([64]) 

batch_idx, (images, targets) = next(enumerate(train_loader))
print(f'current batch index is {batch_idx}')
print(f'images has shape {images.size()}')
print(f'targets has shape {targets.size()}')



In [30]:

Section 3: Building the neural network structure
In the instructions, we will build a simple neural network which utilize the following layers:

fully connected layers: nn.Linear(input_dim, output_dim)
convolution layers: nn.Conv2d(input_channel, output_channel, kernel_size)
Relu function: F.relu(input_)

import matplotlib.pyplot as plt

fig, ax = plt.subplots(3,3)
fig.set_size_inches(12,12)
for i in range(3):
  for j in range(3):
    ax[i,j].imshow(images[i*3+j][0], cmap='gray')
    ax[i,j].set_title(f'label {targets[i*3+j]}')
fig.show()



max pooling: F.max_pool2d(input_, kernal_size)
log softmax: F.log_soft_max(input_)

More details on this functions are listed here: torch.nn.* (https://pytorch.org/docs/stable/nn.html)
torch.nn.functional.* (https://pytorch.org/docs/stable/nn.functional.html)

Here is how a standard neural network setup:

In [31]:

Note: Always keep track of the dimension of the x throughout the neural network. The dimension
can easily get mis-mismatched due to the parameter setup for various layers.

We further need to set up an optimizer to help us backprop the network and learn all its
parameters. We use the stochastic gradient descent optimizer: optim.SGD(model, lr, 
momentum)

In [32]:

We can futher get the number of parameters by using this one line of code

In [33]:

Section 4: Training/Test our neural network
Generally we need a training function train()  that completes the following tasks:

1. init our optimizer

Our neural network has a total of 4408 parameters 

import torch.nn as nn
import torch.nn.functional as F

class OurNN(nn.Module): # Any neural generated network should be generate

  def __init__(self):
    super(OurNN, self).__init__()

    self.conv = nn.Conv2d(1, 3, kernel_size=5)
    self.fc = nn.Linear(432, 10)

  def forward(self, x):
    x = self.conv(x)        # x now has shape (batchsize x 3 x 24 x 24)
    x = F.relu(F.max_pool2d(x,2))  # x now has shape (batchsize x 3 x 12 x 
    x = x.view(-1, 432)      # x now has shape (batchsize x 432)
    x = F.relu(self.fc(x))     # x has shape (batchsize x 10)
    return F.log_softmax(x,-1) 

import torch.optim as optim

classifier = OurNN()
optimizer = optim.SGD(classifier.parameters(), lr=0.01, momentum=0.8)

total_params = sum(p.numel() for p in classifier.parameters())
print(f'Our neural network has a total of {total_params} parameters')

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.functional.html


2. get batches of data
3. feed forward the data into our network
4. compute the loss between the output of our network and actual label
5. move a step on the gradient by optimizer
6. output some visual information on what we do

Also for the test function test() , we have the following tasks:

1. get batches of data
2. feed forward the data into our network
3. compute the loss between the output of our network and actual label
4. calculate our correctness of the output
5. save and output some inforamtion on what we do

Here is the code for how we might implement the ideas:



In [34]: def train(epoch):

  classifier.train() # we need to set the mode for our model

  for batch_idx, (images, targets) in enumerate(train_loader):

    optimizer.zero_grad()
    output = classifier(images)
    loss = F.nll_loss(output, targets) # Here is a typical loss function (n
    loss.backward()
    optimizer.step()

    if batch_idx % 10 == 0: # We record our output every 10 batches
      train_losses.append(loss.item()) # item() is to get the value of the 
      train_counter.append(
        (batch_idx*64) + ((epoch-1)*len(train_loader.dataset)))
    if batch_idx % 100 == 0: # We visulize our output every 10 batches
      print(f'Epoch {epoch}: [{batch_idx*len(images)}/{len(train_loader.dat

def test(epoch):

  classifier.eval() # we need to set the mode for our model

  test_loss = 0
  correct = 0

  with torch.no_grad():
    for images, targets in test_loader:
      output = classifier(images)
      test_loss += F.nll_loss(output, targets, reduction='sum').item()
      pred = output.data.max(1, keepdim=True)[1] # we get the estimate of o
      correct += pred.eq(targets.data.view_as(pred)).sum() # sum up the cor
  
  test_loss /= len(test_loader.dataset)
  test_losses.append(test_loss)
  test_counter.append(len(train_loader.dataset)*epoch)

  print(f'Test result on epoch {epoch}: Avg loss is {test_loss}, Accuracy: 



In [35]:

This simple neural network already achieves an overall accuracy of 87.77%. (Note: random guesses
would have an accuracy of 10%)

Section 5: Visualiaze our result

Epoch 1: [0/60000] Loss: 2.3058855533599854 
Epoch 1: [6400/60000] Loss: 0.5898342728614807 
Epoch 1: [12800/60000] Loss: 0.8528665900230408 
Epoch 1: [19200/60000] Loss: 0.7629268765449524 
Epoch 1: [25600/60000] Loss: 0.6192837953567505 
Epoch 1: [32000/60000] Loss: 0.573138415813446 
Epoch 1: [38400/60000] Loss: 0.6554527878761292 
Epoch 1: [44800/60000] Loss: 0.4098437428474426 
Epoch 1: [51200/60000] Loss: 0.401955783367157 
Epoch 1: [57600/60000] Loss: 0.25504377484321594 
Test result on epoch 1: Avg loss is 0.3735759582519531, Accuracy: 86.4199
9816894531% 
Epoch 2: [0/60000] Loss: 0.3953891396522522 
Epoch 2: [6400/60000] Loss: 0.3865256607532501 
Epoch 2: [12800/60000] Loss: 0.22794613242149353 
Epoch 2: [19200/60000] Loss: 0.24754846096038818 
Epoch 2: [25600/60000] Loss: 0.35050201416015625 
Epoch 2: [32000/60000] Loss: 0.46017521619796753 
Epoch 2: [38400/60000] Loss: 0.2107229381799698 
Epoch 2: [44800/60000] Loss: 0.2761748135089874 
Epoch 2: [51200/60000] Loss: 0.27811184525489807 
Epoch 2: [57600/60000] Loss: 0.2668350040912628 
Test result on epoch 2: Avg loss is 0.3368158569335937, Accuracy: 87.0299
9877929688% 
Epoch 3: [0/60000] Loss: 0.37381353974342346 
Epoch 3: [6400/60000] Loss: 0.33359143137931824 
Epoch 3: [12800/60000] Loss: 0.4062284231185913 
Epoch 3: [19200/60000] Loss: 0.24973338842391968 
Epoch 3: [25600/60000] Loss: 0.33841317892074585 
Epoch 3: [32000/60000] Loss: 0.23595964908599854 
Epoch 3: [38400/60000] Loss: 0.5061521530151367 
Epoch 3: [44800/60000] Loss: 0.35956302285194397 
Epoch 3: [51200/60000] Loss: 0.293857216835022 
Epoch 3: [57600/60000] Loss: 0.32550153136253357 
Test result on epoch 3: Avg loss is 0.3126710235595703, Accuracy: 87.7699
966430664% 

train_losses = []
train_counter = []
test_losses = []
test_counter = []
max_epoch = 3

for epoch in range(1, max_epoch+1):
  train(epoch)
  test(epoch)



Here we plot our loss function graph and some of our predictions:
Loss function plot

In [36]:

Judging from our loss graph, our network actually converges at only 1 epoch.

Out[36]: Text(0, 0.5, 'negative log likelihood loss')

fig = plt.figure(figsize=(12,5))
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')


