
ECE 570 Assignment 4 Instructions

Instructions
This Jupyter notebook document entitled Assignment_04_Instructions contains instructions for doing your
assignment exercise. A second Jupyter notebook document entited Assignment_04_Exercise contains all the
exercises that you will need to perform.

As you read each section of this instruction, you should try running the associated code snippets. The
colaboratory environment allows you to run code snippets locally by clicking on the arrow on the left of the
code. This is a wonderful feature that allows you to experiment as you read. You should take advantage of this
and experiment and test different ideas, so you can become more familiar with the Python and the Jupyter
programing environment.

At the end of each sub-section, there will be exercises to perform. You should perform the exercises in the
document Assignment_04_Exercise, which will contain all your results. You can then hand in your results by
printing the Assignment_04_Exercise document as a pdf with all code and simulation results included.

Section 1: Using Pytorch to implement autoencoders
In previous deep learning tasks, we only focus on how to implement a classifier by using neural networks.
However, neural networks can do much more than this. Autoencoders is one of the easist implementation that
allows the neural network to output image-like data.

Autoencoders are a general class of neural networks that consist of two components: an encoder and a
decoder. The encoder takes the image and encodes it into a low dimensional vector representation. The
decoder takes the vector and decompresses it into something close to the original image. Autoencoders have a
variety of useful applications including denoising of images. Moreover, they are just cool because they provide a
mechanism to represent complex image content as low dimensional vectors.

Another important feature of autoencoders is that they use unsupervised training. In other words, they can be
trained without training labels. This is important because in many cases it may be difficult to obtain labeled
training data or ground truth.

In this section, we will learn how to implement a simple autoencoder using a fully connected neural network.

Again, we are using our old friend the MNIST data. We first download it and construct data loaders for it.
Moreover, we create a variable device  that sets which device we want the neural network to run onto.

Important: Be sure to select the GPU device in the colab setup.



In [1]: import torchvision
import torch 
 
transform = torchvision.transforms.Compose([torchvision.transforms.ToTen
sor()]) # Images already in [0,1] 
 
train_dataset = torchvision.datasets.MNIST('data', train=True, download=
True, transform=transform)
test_dataset = torchvision.datasets.MNIST('data', train=False, download=
True, transform=transform) 
 
batch_size_train, batch_size_test = 64, 1000 
 
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=bat
ch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch
_size_test, shuffle=False) 
 
device = 'cuda' if torch.cuda.is_available()==True else 'cpu'
device = torch.device(device)
print(f'We are using device name "{device}"')



In the network structure, the neural network itself consists of two parts. The encoding layer and decoding layer.
The encoding layer here is a fully connected network that changes the dimension from [batch_size x 784] to
[batch_size x 16], and the decoding layer works in the exact opposite way, which is a fully connected network
that changes the dimension from [batch_size x 16] back to [batch_size x 784]. Note, by doing this we are
compressing our images to 16 instead of 784 features!!

We move our neural network to the device we want to run on simply by applying the function 
model.to(device) . Also, we use a sigmoid activation at the final layer to ensure the output image pixel

values are between 0 and 1.

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz 
to data/MNIST/raw/train-images-idx3-ubyte.gz 

Extracting data/MNIST/raw/train-images-idx3-ubyte.gz to data/MNIST/raw 
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz 
to data/MNIST/raw/train-labels-idx1-ubyte.gz 

Extracting data/MNIST/raw/train-labels-idx1-ubyte.gz to data/MNIST/raw 
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 
to data/MNIST/raw/t10k-images-idx3-ubyte.gz 
 

Extracting data/MNIST/raw/t10k-images-idx3-ubyte.gz to data/MNIST/raw 
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 
to data/MNIST/raw/t10k-labels-idx1-ubyte.gz 

Extracting data/MNIST/raw/t10k-labels-idx1-ubyte.gz to data/MNIST/raw 
Processing... 
Done! 

/usr/local/lib/python3.6/dist-packages/torchvision/datasets/mnist.py:46
9: UserWarning: The given NumPy array is not writeable, and PyTorch doe
s not support non-writeable tensors. This means you can write to the un
derlying (supposedly non-writeable) NumPy array using the tensor. You m
ay want to copy the array to protect its data or make it writeable befo
re converting it to a tensor. This type of warning will be suppressed f
or the rest of this program. (Triggered internally at  /pytorch/torch/c
src/utils/tensor_numpy.cpp:141.) 
  return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s) 

We are using device name "cuda" 
 
 



In [2]: import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim 
 
latent_feature = 16 
 
class our_AE(nn.Module): 
  def __init__(self): 
    super(our_AE, self).__init__() 
 
    # encoder 
    self.en_fc1 = nn.Linear(in_features=784, out_features=512) 
    self.en_fc2 = nn.Linear(in_features=512, out_features=latent_feature
) 
 
    # decoder 
    self.de_fc1 = nn.Linear(in_features=latent_feature, out_features=512
) 
    self.de_fc2 = nn.Linear(in_features=512, out_features=784) 
 
  def forward(self, x): 
 
    # encoding layers 
    x = x.view(-1, 784) 
    x = F.relu(self.en_fc1(x)) 
    x = F.relu(self.en_fc2(x)) 
 
    # decoding layers 
    x = F.relu(self.de_fc1(x)) 
    x = torch.sigmoid(self.de_fc2(x)) 
    x = x.view(-1, 1, 28, 28) 
    return x 
 
 
AE = our_AE().to(device)
optimizer = optim.Adam(AE.parameters(), lr=1e-4)
loss_fn = nn.MSELoss(reduction='sum')

Here, since the loss function is trying to compare two images. We can select the MSE loss function to calculate
the loss. Also, we are selecting the Adam optimizer.

Then, as usual, we define our training and test function for the neural network.
Note: We move our image tensor to device we want before plugging into the neural network



In [3]: def train(epoch, device): 
 
  AE.train() # we need to set the mode for our model 
 
  for batch_idx, (images, _) in enumerate(train_loader): # Note that we
 do not need the labels 
 
    optimizer.zero_grad() 
    images = images.to(device) 
    output = AE(images) 
    loss = loss_fn(output, images) # Here is a typical loss function (Me
an square error) 
    loss.backward() 
    optimizer.step() 
 
    if batch_idx % 10 == 0: # We record our output every 10 batches 
      train_losses.append(loss.item()/batch_size_train) # item() is to g
et the value of the tensor directly 
      train_counter.append( 
        (batch_idx*64) + ((epoch-1)*len(train_loader.dataset))) 
    if batch_idx % 100 == 0: # We visulize our output every 100 batches 
      print(f'Epoch {epoch}: [{batch_idx*len(images)}/{len(train_loader.
dataset)}] Loss: {loss.item()/batch_size_train}') 
 
 
def test(epoch, device): 
 
  AE.eval() # we need to set the mode for our model 
 
  test_loss = 0 
  correct = 0 
 
  with torch.no_grad(): 
    for images, _ in test_loader: 
      images = images.to(device) 
      output = AE(images) 
      test_loss += loss_fn(output, images).item() 
   
  test_loss /= len(test_loader.dataset) 
  test_losses.append(test_loss) 
  test_counter.append(len(train_loader.dataset)*epoch) 
 
  print(f'Test result on epoch {epoch}: Avg loss is {test_loss}')



In [4]: train_losses = []
train_counter = []
test_losses = []
test_counter = []
max_epoch = 2 
 
for epoch in range(1, max_epoch+1): 
  train(epoch, device=device) 
  test(epoch, device=device)

Then, we can print our result by simply selecting several images from the dataset and then forwarding the
images using autoencoders. Note we can move the images on the GPU back to the CPU using the .cpu()
function of PyTorch tensors.

Epoch 1: [0/60000] Loss: 181.97694396972656 
Epoch 1: [6400/60000] Loss: 60.13105392456055 
Epoch 1: [12800/60000] Loss: 51.15803527832031 
Epoch 1: [19200/60000] Loss: 45.82722473144531 
Epoch 1: [25600/60000] Loss: 38.86247634887695 
Epoch 1: [32000/60000] Loss: 32.531455993652344 
Epoch 1: [38400/60000] Loss: 31.572914123535156 
Epoch 1: [44800/60000] Loss: 30.667959213256836 
Epoch 1: [51200/60000] Loss: 28.580026626586914 
Epoch 1: [57600/60000] Loss: 29.886478424072266 
Test result on epoch 1: Avg loss is 26.5787306640625 
Epoch 2: [0/60000] Loss: 26.768098831176758 
Epoch 2: [6400/60000] Loss: 29.226436614990234 
Epoch 2: [12800/60000] Loss: 22.737565994262695 
Epoch 2: [19200/60000] Loss: 24.606029510498047 
Epoch 2: [25600/60000] Loss: 23.599998474121094 
Epoch 2: [32000/60000] Loss: 21.032642364501953 
Epoch 2: [38400/60000] Loss: 22.989704132080078 
Epoch 2: [44800/60000] Loss: 21.968841552734375 
Epoch 2: [51200/60000] Loss: 20.54926109313965 
Epoch 2: [57600/60000] Loss: 20.467634201049805 
Test result on epoch 2: Avg loss is 20.2530126953125 



In [5]: import matplotlib.pyplot as plt 
 
batch_idx, (images, _) = next(enumerate(test_loader))
images = images.to(device)
output = AE(images).cpu().detach()
images = images.cpu() 
 
print(images.size(), output.size()) 
 
fig, ax = plt.subplots(2,4)
fig.set_size_inches(12,6) 
 
for idx in range(4): 
  ax[0,idx].imshow(images[idx][0], cmap='gray') 
  ax[1,idx].imshow(output[idx][0], cmap='gray') 
 
fig.show()

Note: We are only using latent space with size 16 compared to the original data which is 28*28=784. We have
achieved a compression rate of 17/784 = 0.02!!!

Section 2: Convolutional autoencoders (and transpose
convolutions)

Encoders via strided convolutions (that downsample)
Convolutions with a stride greater than 1 will generally reduce the width and height of the image. Thus,
convolutions can be seen as a type of downsampling. One way to construct the encoder is to downsample the
images via convolutions. Here we give an example of using two convolutional layers with stride of 2 to reduce
the dimensionality.

torch.Size([1000, 1, 28, 28]) torch.Size([1000, 1, 28, 28]) 



In [6]: batch_size = 10
n_channels = 3
n_latent = 4
image_size = 4
conv1 = nn.Conv2d(n_channels, 5, kernel_size=2, stride=2)
conv2 = nn.Conv2d(5, n_latent, kernel_size=2, stride=2) 
 
x = torch.randn((batch_size, n_channels, image_size, image_size)) # 
print(f'x shape = {x.shape}')
x = conv1(x)
print(f'x shape = {x.shape}')
x = conv2(x)
print(f'x shape = {x.shape}')
x = x.view(batch_size, -1)
print(f'x shape = {x.shape}') # 4 dimensional latent space based on chan
nels

Decoders via transpose convolution / fractionally strided convolution (that
upsample)
For the decoders, we need to upsample to go from a latent dimension back to the original dimension. Thus, we
need something like convolutions but that can upsample rather than downsample. The transposed convolution
does exactly this. The number of input and output channels is similar to the normal convolution, however, the
operation does the "transpose" of the convolutions such that a stride of 2 actually increases the output size
rather than decreasing.

This is similar to the transpose of a matrix multiplication. For example, if  and , then 
--thus going from 50 to 20 dimensions. However, if we multiply  and , then we get 

--thus going from 20 to 50 dimensions.

Note that transpose convolutions are not inverses but rather just upsampling operations (similar to the fact that 
 is not the inverse of  except if  is orthogonal.

While you don't need more information than above to do the exercises, you can see
https://arxiv.org/pdf/1603.07285v1.pdf (https://arxiv.org/pdf/1603.07285v1.pdf) chapter 4 for more information
on transpose convolutions.

In practice, we can easily create these transpose convolutions in PyTorch to upsample from the latent space to
the original image shape as we show in the example below. Note that we switch the order of the convolutions
and the input/output number of channels, but the transpose convolutions have the same kernel_size and stride
as the convolutions original convolutions.

For convolutional autoencoders, usually the encoders use convolutions and the decoder uses transpose
convolutions in the reverse order to get back the original shape.

𝐴 ∈ 𝑅20,50 𝑥 ∈ 𝑅50

𝑦 = 𝐴𝑥 ∈ 𝑅20 𝐴𝑇 𝑦 ∈ 𝑅20

𝑧 = 𝑦 ∈𝐴𝑇 𝑅50

𝐴𝑇 𝐴 𝐴

x shape = torch.Size([10, 3, 4, 4]) 
x shape = torch.Size([10, 5, 2, 2]) 
x shape = torch.Size([10, 4, 1, 1]) 
x shape = torch.Size([10, 4]) 

https://arxiv.org/pdf/1603.07285v1.pdf


In [7]: tran_conv2 = nn.ConvTranspose2d(n_latent, 5, kernel_size=2, stride=2)
tran_conv1 = nn.ConvTranspose2d(5, n_channels, kernel_size=2, stride=2) 
 
z = x
print(f'z shape = {z.shape}')
z = z.view(batch_size, n_latent, 1, 1)
print(f'z shape = {z.shape}')
z = tran_conv2(z)
print(f'z shape = {z.shape}')
z = tran_conv1(z)
print(f'z shape = {z.shape}')

Section 3: Install extra packages in Colab.
The !  in Jupyter notebooks executes a bash shell command so you can do things like installing Python
modules using pip , cloning GitHub repositories using !git clone ...  or showing the contents of the
current directory via !ls .

You probably need packages that is nor avalible here in the colab environment. Here is a example on how to
implement this using pip .

If we need to import the package called torchsummary , we only need to use pip to install the package (this
will have to be run every time you run the notebook as colab destroys the environment when you close the
notebook.

In [8]: !pip install torchsummary 

z shape = torch.Size([10, 4]) 
z shape = torch.Size([10, 4, 1, 1]) 
z shape = torch.Size([10, 5, 2, 2]) 
z shape = torch.Size([10, 3, 4, 4]) 

Requirement already satisfied: torchsummary in /usr/local/lib/python3.
6/dist-packages (1.5.1) 



In [9]: from torchsummary import summary
summary(AE, (1,784))

You can actually use the summary function a lot. It helps print your model in a more nicer form.

Section 4: Customizable transform function and dataloader
Usually when we want to preprocess our dataset. We apply the corresponding transform functions in the data
download step. However, what if we want to write our own transform functions? For example, if we want to flip
the pixel values how do we apply such transform to the dataset. It turns out you only need to define a new
transform class that has the following functions:

__init__ : This function initializes your transformer (usually to set parameters of the transformer)
__call__ : This function should contain your transform operation Here is an example on how to create a

flip value transform:

In [3]: import torchvision
import torch
import matplotlib.pyplot as plt 
 
class FlipValue(object): 
  def __init__(self, max_value=1): 
    self.max_value = max_value 
       
  def __call__(self, tensor): 
    tensor = self.max_value - tensor 
    return tensor 
 
transform_flip = torchvision.transforms.Compose([torchvision.transforms.
ToTensor(), FlipValue(1)])

---------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
================================================================ 
            Linear-1                  [-1, 512]         401,920 
            Linear-2                   [-1, 16]           8,208 
            Linear-3                  [-1, 512]           8,704 
            Linear-4                  [-1, 784]         402,192 
================================================================ 
Total params: 821,024 
Trainable params: 821,024 
Non-trainable params: 0 
---------------------------------------------------------------- 
Input size (MB): 0.00 
Forward/backward pass size (MB): 0.01 
Params size (MB): 3.13 
Estimated Total Size (MB): 3.15 
---------------------------------------------------------------- 



Note that we can just concat our transform with other transforms.

Now, we want to create a paired dataset that extract both the flipped dataset and original dataset at the same
time when we call the dataloader. Again, this can be done by creating a new dataset class with the following
functions:

__init__ : This function is needed to initilize your dataset.
__getitem__ : This function is used when you call the class by an index (e.g., dataset[10] ) .
__len__ : This function is called when you apply the len()  function to your class.

Below is one way to concat two datasets and form a paired dataset



In [9]: transform_flip = torchvision.transforms.Compose([torchvision.transforms.
ToTensor(), FlipValue(1)])
transform_original = torchvision.transforms.Compose([torchvision.transfo
rms.ToTensor()]) 
 
train_dataset_flipped = torchvision.datasets.MNIST('data', train=True, d
ownload=True, transform=transform_flip)
train_dataset_original = torchvision.datasets.MNIST('data', train=True, 
download=True, transform=transform_original) 
 
class ConcatDataset(torch.utils.data.Dataset): 
  ###########################   <YOUR CODE>  ###########################
# 
  def __init__(self, *datasets): 
    self.datasets = datasets 
 
  def __getitem__(self, i): 
    return tuple(d[i] for d in self.datasets) 
 
  def __len__(self): 
    return min(len(d) for d in self.datasets) 
  #########################  <END YOUR CODE>  ##########################
## 
 
train_loader = torch.utils.data.DataLoader(ConcatDataset(train_dataset_f
lipped, train_dataset_original), 
                      batch_size=10, shuffle=True)
_, (fliped, original) = next(enumerate(train_loader)) 
 
fig,ax = plt.subplots(2,3)
fig.set_size_inches(12,8)
for idx in range(3): 
  ax[0,idx].imshow(fliped[0][idx][0], cmap='gray') 
  ax[0,idx].set_title(f'label is {fliped[1][idx]}') 
  ax[1,idx].imshow(original[0][idx][0], cmap='gray') 
  ax[1,idx].set_title(f'label is {original[1][idx]}')
fig.show()




