ECE 570 Assignment 4 Exercise

Your Name:

Exercise 1: Creating an image denoiser using a CNN
autoencoder.

In this exercise you are trying to build a autoencoder with CNN layers that can denoise images.

Task 1: Create additive noise transform

1. Add code to AddGaussianNoise transform class that will:

» Add additive Gaussian noise to the batch of input images (i.e add noise with gaussian distribution on
each pixel). The noise for every pixel should have mean value 0 and standard deviation of 0.3, i.e
e ~ N(0,0.3).

« Clip the values to be between 0 and 1 again as they may be outside the range for pixel values after
adding Gaussian noise.

2. Add code to ConcatDataset dataloader class that will form a paired dataset that contains a noisy image
and its original image. i.e Your concatenated dataset should output noisy image and original image just like
what image and label is getting extracted from our previous MNIST dataloader. Note: Your code should
not be the same with the instruction since the instruction have paired dataset that contains the
labels; here you should only contains the images.

3. Plot the first 3 training images and their noisy counterparts in a 2x3 subplot with appropriate titles, figure
size, label, etc.



In

[

]

# Import and load MNIST data
import torchvision

import torch

import matplotlib.pyplot as plt

class AddGaussianNoise(object):
i <YOUR CODE> i

#

##

transform noisy = torchvision.transforms.Compose([torchvision.transforms
.ToTensor (), AddGaussianNoise(0.,0.3)])

transform original = torchvision.transforms.Compose([torchvision.transfo
rms.ToTensor()1])

train_dataset_noisy = torchvision.datasets.MNIST('data', train=True, dow
nload=True, transform=transform noisy)

train dataset_original = torchvision.datasets.MNIST('data', train=True,
download=True, transform=transform original)

test dataset noisy = torchvision.datasets.MNIST('data', train=False, dow
nload=True, transform=transform noisy)

test dataset original = torchvision.datasets.MNIST('data', train=False,
download=True, transform=transform original)

class ConcatDataset(torch.utils.data.Dataset):
AAHHHH A A A A A H A A A A A H A <YOUR CODE> A H A A A A A A A A A A A

#

# A <END YOUR CODE> 7 PHAA
##

batch size train, batch size test = 64, 1000
train loader = torch.utils.data.Dataloader (ConcatDataset(train dataset n
oisy, train dataset original),

batch size=batch size train, shuffle=True)
test loader = torch.utils.data.Dataloader(ConcatDataset(test dataset noi
sy, test dataset original),

batch size=batch size test, shuffle=False)

<YOUR CODE>
# Plot the first 3 training images with corresponding noisy images

e <END YOUR CODE> HHHH A A A A A A A A A A A A A



Task 2: Create and train a denoising autoencoder

1. Build an autoencoder neural network structure with encoders and decoders that is a little more complicated
than in the instructions. You can also create the network to have convolutional or transpose convolutional
layers. (You can follow the instructions code skeleton with a key difference of using convolutional layers).

2. Move your model to GPU so that you can train your model with GPU. (This step can be simultaneously
implemented in the above step)

3. Train your denoising autoencoder model with appropriate optimizer and loss function. The loss function
should be computed between the output of the noisy images and the clean images, i.e., L(x, g(f(X))),
where X = Xx + € is the noisy image and ¢ is the Gaussian niose. You should train your model with enough
epochs so that your loss reaches a relatively steady value. Note: Your loss on the test data should be
lower than 20. You may have to experiment with various model architectures to achieve this test loss.

4. Visualize your result with a 3 x 3 grid of subplots. You should show 3 test images, 3 test images with noise
added, and 3 test images reconstructed after passing your noisy test images through the DAE.

In [ ]: i # 7 27 7 <YOUR CODE> % / 7 £ 45 7 77 777

<END YOUR CODE>

Exercise 2: Build a variational autoencoder that can generate
MNIST images

Task 1: Setup

1. Import necessary packages
2. Load the MNIST data as above.
3. Print the size of your training and test images.

In [ ]: #HH 7 #HH <YOUR CODE>

<END YOUR CODE>



Task 2: VAE model

Build the VAE (variational autoencoder) model. The general code skeleton is provided here, so you only need to
complete the functions in the networks. (You may need to import certain packages before this code getting
implemented)

1. Inside the reparameterize function you job is to output a latent vector.You should first calculate the
standard deviation std from the log value of var log var , then generate the vector in Gaussian
distribution with mu and std.

2. Inside the forward function you should extract the mu and log var from the latent representation
after the encoder. The output of encoder should be in the dimension [batch size x 2 x
latent feature] , which includes a mean and log variance for each latent feature. Remember that in
VAEs, the encoder outputs the parameters of the latent distribution. Note that the second dimension has
value 2, so you need to split this tensor into two components, one called mu and the other called

log_var ---which will be fed into reparameterize.



In [ ] import torch.nn as nn

import torch.nn.functional as F
latent feature = 16

class our_VAE(nn.Module):
def _ init (self):
super (our VAE, self). init ()

# encoder
self.en fcl = nn.Linear(in_ features=784, out features=512)
self.en fc2 nn.Linear(in features=512, out features=latent feature

*2)

# decoder
self.de_fcl = nn.Linear(in_features=latent feature, out features=512

self.de fc2 = nn.Linear(in features=512, out features=784)

def reparameterize(self, mu, log var):

moon

:param mu: mean from the latent space
:param log var: the log variance from the latent space

You should return a sample with gaussian distribution N(mu, var)

moon

#H#H#

YL LELESELE LSS SE AL S S S S S S <END YOUR CODE>

H#HAH
return sample

def forward(self, x):

mooon

:param x: input variables

You should return a sample with gaussian distribution N(mu, var)

# encoding layers

X = x.view(-1, 784)

X = F.relu(self.en fcl(x))

b4 self.en fc2(x).view(-1, 2, latent feature)

2L AL AL 7) 7)

# HAHBAAHHA HAH HHHH <YOUR CODE> #####

#HH#
# Extract mu and log var from x

W77 77777777771 <END YOURCODE> TN 77 7777777777 777777 7,

H#HAA
z = self.reparameterize(mu, log var)

# decoding layers
X = F.relu(self.de fcl(z))
x = torch.sigmoid(self.de fc2(x))



x = x.view(-1, 1, 28, 28)

return x, mu, log var

Task 3: VAE Loss function

Construct your loss function. The loss function for VAE is a little bit difficult:
NegativeELBO(x, g, /) = E, [—log p,(x|2)] + K L(q7(z]x), ps(2))

= ReconstructionLoss + Regularizer

Basically you need to calculate two part and then add them together. While we discussed the Gaussian
distribution in class, here we assume the output distribution of the decoder is an independent Bernoulli
distribution for every pixel value since the values are between 0 and 1. The value of the pixel corresponds to the
average of the Bernoulli distribution. This loss can be seen in Appendix C.1 of the original VAE paper:
https://arxiv.org/pdf/1312.6114.pdf (https://arxiv.org/pdf/1312.6114.pdf). This reconstruction loss can be
calculated using the binary-cross-entropy loss between the original images and the output of the VAE. See

torch.nn.functional.binary cross_entropy
https://pytorch.org/docs/stable/nn.functional.html#binary-cross-entropy
(https://pytorch.org/docs/stable/nn.functional.html#binary-cross-entropy). You should use the sum reduction of
the loss to sum the loss over all the pixels.

The second part is the KL-Divergence between your model's approximate posterier g f(zlx) and the model prior
P,(2). If both are Gaussian, then this KL divergence can be computed in closed form (see Appendix B of

original VAE paper above): K L(q¢(z|x), ps(z)) = —% Z;lzl(l + log(of) - /4]2. — 012)

The class slides provide some derivation of this. You can also look at the original paper or this blog post for
some more information: Variational Autoencoder (https://jaan.io/what-is-variational-autoencoder-vae-tutorial/)

Your task here is simply write a function vae loss that takes the value of your model's output, the original
images, mu, and log_var, and returns the loss.

In [ ]: def vae loss(output, mu, log var, images):
:param output: this the output of your neural network
sparam mu: this is the mu from the latent space
:param log var: this is the log var from the latent space
:param images: this is the original sets of images

moann

<YOUR CODE>

<END YOUR CODE>

##

return loss


https://arxiv.org/pdf/1312.6114.pdf
https://pytorch.org/docs/stable/nn.functional.html#binary-cross-entropy
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Task 4: Train and visualize output

1. Train your model with an appropriate optimizer and above loss function. You should train your model with
enough epochs so that your loss reaches a relatively steady value.

2. Visualize your result. You should show at three pairs of images where each pair consists of an original test
image and its VAE reconstructed version.

In [ ]: #4 44 bt z <YOUR CODE>

FHH FATHATH P77 <END YOUR CODE> H A




