Edited version of PyTorch DCGAN tutorial for MNIST

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
(Main edits: Edited the architecture and parameters to work for MNIST instead of CelebA but kept structure otherwise the same)

DCGAN Tutorial

Author: Nathan Inkawhich <https://github.com/inkawhich>
In [2]:

```python
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

# Set random seed for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)

# Root directory for dataset
dataroot = "data/celeba"

# Number of workers for dataloader
workers = 2

# Batch size during training
batch_size = 128

# Spatial size of training images. All images will be resized to this
# size using a transformer.
#image_size = 64
image_size = 32

# Number of channels in the training images. For color images this is 3
#nc = 3
nc = 1

# Size of z latent vector (i.e. size of generator input)
.nz = 100

# Size of feature maps in generator
#ngf = 64
ngf = 8

# Size of feature maps in discriminator
#ndf = 64
ndf = 8

# Number of training epochs
```
<table>
<thead>
<tr>
<th>num_epochs = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Learning rate for optimizers</td>
</tr>
<tr>
<td>lr = 0.0002</td>
</tr>
<tr>
<td># Betal hyperparam for Adam optimizers</td>
</tr>
<tr>
<td>betal = 0.5</td>
</tr>
<tr>
<td># Number of GPUs available. Use 0 for CPU mode.</td>
</tr>
<tr>
<td>ngpu = 1</td>
</tr>
<tr>
<td>Random Seed: 999</td>
</tr>
</tbody>
</table>

Data

We will use MNIST instead of CelebA as in the original tutorial
dataset = dset.MNIST(
 'data', train=True, download=True,
 transform=transforms.Compose([
 transforms.Resize(image_size), # Resize from 28 x 28 to 32 x 32 (so power of 2)
 transforms.CenterCrop(image_size),
 transforms.ToTensor(),
 transforms.Normalize((0.5,), (0.5,))
]))

Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
 shuffle=True, num_workers=workers)

Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() and ngpu > 0) else "cpu")

Plot some training images
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64],
 padding=2, normalize=True).cpu(),(1,2,0)))
0it [00:00, ?it/s]

9920512it [00:00, 11036156.56it/s]

Extracting data/MNIST/raw/train-images-idx3-ubyte.gz

32768it [00:00, 206851.80it/s]

0it [00:00, ?it/s]

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to data/MNIST/raw/train-labels-idx1-ubyte.gz

Extracting data/MNIST/raw/train-labels-idx1-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to data/MNIST/raw/t10k-images-idx3-ubyte.gz

1654784it [00:00, 4557841.36it/s]

0it [00:00, ?it/s]

Extracting data/MNIST/raw/t10k-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to data/MNIST/raw/t10k-labels-idx1-ubyte.gz

8192it [00:00, 56578.24it/s]

Extracting data/MNIST/raw/t10k-labels-idx1-ubyte.gz

Processing...

Done!

Out[3]: <matplotlib.image.AxesImage at 0x121b82cf8>
In [4]:
custom weights initialization called on netG and netD

def weights_init(m):
 classname = m.__class__.__name__
 if classname.find('Conv') != -1:
 nn.init.normal_(m.weight.data, 0.0, 0.02)
 elif classname.find('BatchNorm') != -1:
 nn.init.normal_(m.weight.data, 1.0, 0.02)
 nn.init.constant_(m.bias.data, 0)
```python
In [16]:
# Generator Code

class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution, state size. nz x 1 x 1
            nn.ConvTranspose2d( nz, ngf * 4, kernel_size=4, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),  # inplace ReLU
            # current state size. (ngf*4) x 4 x 4
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # current state size. (ngf*2) x 8 x 8
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # current state size. ngf x 16 x 16
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            # current state size. nc x 32 x 32
            nn.Tanh()  # Produce number between 0 and 1 for pixel values
        )

        def forward(self, input):
            return self.main(input)

    # Create the generator
    netG = Generator(ngpu).to(device)

    # Handle multi-gpu if desired
    if (device.type == 'cuda') and (ngpu > 1):
        netG = nn.DataParallel(netG, list(range(ngpu)))

    # Apply the weights_init function to randomly initialize all weights
    # to mean=0, stdev=0.2.
    netG.apply(weights_init)

    # Print the model
    print(netG)
```
As mentioned, the discriminator, D, is a binary classification network that takes an image as input and outputs a scalar probability that the input image is real (as opposed to fake). Here, D takes a 3x64x64 input image, processes it through a series of Conv2d, BatchNorm2d, and LeakyReLU layers, and outputs the final probability through a Sigmoid activation function. This architecture can be extended with more layers if necessary for the problem, but there is significance to the use of the strided convolution, BatchNorm, and LeakyReLUs. The DCGAN paper mentions it is a good practice to use strided convolution rather than pooling to downsample because it lets the network learn its own pooling function. Also batch norm and leaky relu functions promote healthy gradient flow which is critical for the learning process of both G and D.

Discriminator Code

Generator(
 (main): Sequential(
 (0): ConvTranspose2d(100, 32, kernel_size=(4, 4), stride=(1, 1), bias=False)
 (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (2): ReLU(inplace)
 (3): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
 (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (5): ReLU(inplace)
 (6): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
 (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (8): ReLU(inplace)
 (9): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
 (10): Tanh()
)
)
```python
In [17]: class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 32 x 32
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 16 x 16
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 8 x 8
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 4 x 4
            nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
            # state size. (ndf*4) x 1 x 1
            nn.Sigmoid()  # Produce probability
        )

        def forward(self, input):
            return self.main(input)

    # Create the Discriminator
    netD = Discriminator(ngpu).to(device)

    # Handle multi-gpu if desired
    if (device.type == 'cuda') and (ngpu > 1):
        netD = nn.DataParallel(netD, list(range(ngpu))

    # Apply the weights_init function to randomly initialize all weights
    # to mean=0, stdev=0.2.
    netD.apply(weights_init)

    # Print the model
    print(netD)
```
Loss Functions and Optimizers

With D and G setup, we can specify how they learn through the loss functions and optimizers. We will use the Binary Cross Entropy loss (BCELoss)\footnote{https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss} function which is defined in PyTorch as:

$$\ell(x, y) = L = \{l_1, \ldots, l_N\}^\top, \quad l_n = -\left[y_n \cdot \log x_n + (1 - y_n) \cdot \log(1 - x_n)\right]$$

Notice how this function provides the calculation of both log components in the objective function (i.e. $\log(D(x))$ and $\log(1 - D(G(z)))$). We can specify what part of the BCE equation to use with the y input. This is accomplished in the training loop which is coming up soon, but it is important to understand how we can choose which component we wish to calculate just by changing y (i.e. GT labels).

Next, we define our real label as 1 and the fake label as 0. These labels will be used when calculating the losses of D and G, and this is also the convention used in the original GAN paper. Finally, we set up two separate optimizers, one for D and one for G. As specified in the DCGAN paper, both are Adam optimizers with learning rate 0.0002 and Beta1 = 0.5. For keeping track of the generator's learning progression, we will generate a fixed batch of latent vectors that are drawn from a Gaussian distribution (i.e. fixed_noise). In the training loop, we will periodically input this fixed_noise into G, and over the iterations we will see images form out of the noise.

```python
In [9]:  # Initialize BCELoss function
    criterion = nn.BCELoss()

    # Create batch of latent vectors that we will use to visualize
    # the progression of the generator
    fixed_noise = torch.randn(64, nz, 1, 1, device=device)

    # Establish convention for real and fake labels during training
    real_label = 1
    fake_label = 0

    # Setup Adam optimizers for both G and D
    optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
```
Finally, now that we have all of the parts of the GAN framework defined, we can train it. Be mindful that training GANs is somewhat of an art form, as incorrect hyperparameter settings lead to mode collapse with little explanation of what went wrong. Here, we will closely follow Algorithm 1 from Goodfellow’s paper, while abiding by some of the best practices shown in ganhacks <https://github.com/soumith/ganhacks>__. Namely, we will “construct different mini-batches for real and fake” images, and also adjust G’s objective function to maximize $\log D(G(z))$. Training is split up into two main parts. Part 1 updates the Discriminator and Part 2 updates the Generator.

Part 1 - Train the Discriminator

Recall, the goal of training the discriminator is to maximize the probability of correctly classifying a given input as real or fake. In terms of Goodfellow, we wish to “update the discriminator by ascending its stochastic gradient”. Practically, we want to maximize $\log(D(x)) + \log(1 - D(G(z)))$. Due to the separate mini-batch suggestion from ganhacks, we will calculate this in two steps. First, we will construct a batch of real samples from the training set, forward pass through D, calculate the loss ($\log(D(x))$), then calculate the gradients in a backward pass. Secondly, we will construct a batch of fake samples with the current generator, forward pass this batch through D, calculate the loss ($\log(1 - D(G(z)))$), and accumulate the gradients with a backward pass. Now, with the gradients accumulated from both the all-real and all-fake batches, we call a step of the Discriminator’s optimizer.

Part 2 - Train the Generator

As stated in the original paper, we want to train the Generator by minimizing $\log(1 - D(G(z)))$ in an effort to generate better fakes. As mentioned, this was shown by Goodfellow to not provide sufficient gradients, especially early in the learning process. As a fix, we instead wish to maximize $\log(D(G(z)))$. In the code we accomplish this by: classifying the Generator output from Part 1 with the Discriminator, computing G’s loss using real labels as GT, computing G’s gradients in a backward pass, and finally updating G’s parameters with an optimizer step. It may seem counter-intuitive to use the real labels as GT labels for the loss function, but this allows us to use the $\log(x)$ part of the BCELoss (rather than the $\log(1 - x)$ part) which is exactly what we want.

Finally, we will do some statistic reporting and at the end of each epoch we will push our fixed_noise batch through the generator to visually track the progress of G’s training. The training statistics reported are:

- **Loss_D** - discriminator loss calculated as the sum of losses for the all real and all fake batches ($\log(D(x)) + \log(D(G(z))))$.
- **Loss_G** - generator loss calculated as $\log(D(G(z)))$
- **D(x)** - the average output (across the batch) of the discriminator for the all real batch. This should start close to 1 then theoretically converge to 0.5 when G gets better. Think about why this is.
- **D(G(z))** - average discriminator outputs for the all fake batch. The first number is before D is updated and the second number is after D is updated. These numbers should start near 0 and converge to 0.5 as G gets better. Think about why this is.

Note: This step might take a while, depending on how many epochs you run and if you removed some data from the dataset.
Training Loop

Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0

print("Starting Training Loop..."
For each epoch
for epoch in range(num_epochs):
 # For each batch in the dataloader
 for i, data in enumerate(dataloader, 0):
 # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))
 # Train with all-real batch
 netD.zero_grad()
 # Format batch
 real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, device=device)
Forward pass real batch through D
output = netD(real_cpu).view(-1)
Calculate loss on all-real batch
errD_real = criterion(output, label)
Calculate gradients for D in backward pass
errD_real.backward()
D_x = output.mean().item()

 # Train with all-fake batch
 # Generate batch of latent vectors
 noise = torch.randn(b_size, nz, 1, 1, device=device)
 # Generate fake image batch with G
 fake = netG(noise)
 label.fill_(fake_label)
 # Classify all fake batch with D
 output = netD(fake.detach()).view(-1)
 # Calculate D's loss on the all-fake batch
 errD_fake = criterion(output, label)
 # Calculate the gradients for this batch
 errD_fake.backward()
 D_G_z1 = output.mean().item()
 # Add the gradients from the all-real and all-fake batches
 errD = errD_real + errD_fake
 # Update D
 optimizerD.step()

 # (2) Update G network: maximize log(D(G(z))
 netG.zero_grad()
 label.fill_(real_label) # fake labels are real for generator cost
 # Since we just updated D, perform another forward pass of all-f
ake batch through D
output = netD(fake).view(-1)
Calculate G's loss based on this output
errG = criterion(output, label)
Calculate gradients for G
errG.backward()
D_G_z2 = output.mean().item()
Update G
optimizerG.step()

Output training stats
if i % 50 == 0:
 print('[%d/%d][%d/%d] lLoss_D: %.4f lLoss_G: %.4f lD(x): %.4f lD(G(z)): %.4f / %.4f'
 % (epoch, num_epochs, i, len(dataloader),
 errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

Save Losses for plotting later
G_losses.append(errG.item())
D_losses.append(errD.item())

Check how the generator is doing by saving G's output on fixed _noise
if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
 with torch.no_grad():
 fake = netG(fixed_noise).detach().cpu()
 img_list.append(vutils.make_grid(fake, padding=2, normalize=True))

iters += 1
Starting Training Loop...

[0/5] Loss_D: 1.2262 Loss_G: 0.7743 D(x): 0.5771 D(G(z)): 0.4852 / 0.4646
[0/5] Loss_D: 0.5651 Loss_G: 1.4237 D(x): 0.8186 D(G(z)): 0.2998 / 0.2457
[0/5] Loss_D: 0.2735 Loss_G: 2.5098 D(x): 0.8761 D(G(z)): 0.1257 / 0.0850
[0/5] Loss_D: 0.1213 Loss_G: 3.0445 D(x): 0.9446 D(G(z)): 0.0590 / 0.0508
[0/5] Loss_D: 0.0612 Loss_G: 3.3929 D(x): 0.9811 D(G(z)): 0.0410 / 0.0367
[0/5] Loss_D: 0.0408 Loss_G: 3.8207 D(x): 0.9882 D(G(z)): 0.0278 / 0.0252
[0/5] Loss_D: 0.0240 Loss_G: 4.1598 D(x): 0.9949 D(G(z)): 0.0187 / 0.0175
[0/5] Loss_D: 0.0169 Loss_G: 4.3342 D(x): 0.9968 D(G(z)): 0.0169 / 0.0152
[0/5] Loss_D: 0.0150 Loss_G: 4.6336 D(x): 0.9978 D(G(z)): 0.0127 / 0.0114
[0/5] Loss_D: 0.0139 Loss_G: 4.8258 D(x): 0.9977 D(G(z)): 0.0115 / 0.0098
[1/5] Loss_D: 0.0118 Loss_G: 4.9176 D(x): 0.9978 D(G(z)): 0.0096 / 0.0085
[1/5] Loss_D: 0.0099 Loss_G: 5.0373 D(x): 0.9982 D(G(z)): 0.0081 / 0.0073
[1/5] Loss_D: 0.0074 Loss_G: 5.3453 D(x): 0.9983 D(G(z)): 0.0057 / 0.0052
[1/5] Loss_D: 0.0085 Loss_G: 5.4442 D(x): 0.9974 D(G(z)): 0.0059 / 0.0046
[1/5] Loss_D: 0.0071 Loss_G: 5.8664 D(x): 0.9975 D(G(z)): 0.0046 / 0.0031
[1/5] Loss_D: 0.0466 Loss_G: 4.1165 D(x): 0.9808 D(G(z)): 0.0267 / 0.0174
[1/5] Loss_D: 0.0391 Loss_G: 4.4494 D(x): 0.9827 D(G(z)): 0.0212 / 0.0134
[1/5] Loss_D: 0.0311 Loss_G: 4.4097 D(x): 0.9817 D(G(z)): 0.0122 / 0.0137
[1/5] Loss_D: 0.0284 Loss_G: 4.3807 D(x): 0.9814 D(G(z)): 0.0094 / 0.0152
[1/5] Loss_D: 0.0650 Loss_G: 4.0385 D(x): 0.9672 D(G(z)): 0.0297 / 0.0234
[2/5] Loss_D: 0.0666 Loss_G: 4.0516 D(x): 0.9691 D(G(z)): 0.0339 / 0.0202
[2/5] Loss_D: 0.0436 Loss_G: 4.4736 D(x): 0.9791 D(G(z)): 0.0218 / 0.0163
[2/5] Loss_D: 0.0540 Loss_G: 1.6110 D(x): 0.7758 D(G(z)): 0.2384 / 0.2087
[2/5] Loss_D: 0.0993 Loss_G: 4.0572 D(x): 0.9596 D(G(z)): 0.0536 / 0.0211
[2/5] Loss_D: 0.0386 Loss_G: 4.5503 D(x): 0.9854 D(G(z)): 0.0233 / 0.0146
[2/5] Loss_D: 0.7795 Loss_G: 1.4861 D(x): 0.7561 D(G(z)): 0.3544 / 0.2608
[2/5] Loss_D: 5.2035 Loss_G: 5.6033 D(x): 0.9978 D(G(z)): 0.9917 / 0.0041
[2/5] Loss_D: 0.0523 Loss_G: 4.5947 D(x): 0.9649 D(G(z)): 0.0144 / 0.0119
Results

Finally, let's check out how we did. Here, we will look at three different results. First, we will see how D and G's losses changed during training. Second, we will visualize G's output on the fixed_noise batch for every epoch. And third, we will look at a batch of real data next to a batch of fake data from G.

Loss versus training iteration

Below is a plot of D & G's losses versus training iterations.
Visualization of G's progression

Remember how we saved the generator's output on the fixed_noise batch after every epoch of training. Now, we can visualize the training progression of G with an animation. Press the play button to start the animation.
```python
fig = plt.figure(figsize=(8,8))
plt.axis("off")
ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img_list]
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)

HTML(ani.to_jshtml())
```
Out[12]:

![Grid Image]

- ▼ ▿
Real Images vs. Fake Images

Finally, let's take a look at some real images and fake images side by side.
where to go next

we have reached the end of our journey, but there are several places you could go from here. you could:

- train for longer to see how good the results get
- modify this model to take a different dataset and possibly change the size of the images and the model architecture
- check out some other cool gan projects [here](https://github.com/nashory/gans-awesome-applications)
- create gan's that generate [music](https://deepmind.com/blog/wavenet-generative-model)