In [1]: %matplotlib inline

Edited version of PyTorch DCGAN tutorial for
MNIST

https://pytorch.org/tutorials/beginner/dcgan faces tutorial.html
(https://pytorch.org/tutorials/beginner/dcgan faces tutorial.html) Main edits: Edited the architecture and
parameters to work for MNIST instead of CelebA but kept structure otherwise the same

DCGAN Tutorial

Author: Nathan Inkawhich <https://github.com/inkawhich> __

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

In [2]: from _ future__ import print function
#ematplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

Set random seed for reproducibility

manualSeed = 999

#manualSeed = random.randint(1l, 10000) # use if you want new results
print("Random Seed: ", manualSeed)

random.seed(manualSeed)

torch.manual seed(manualSeed)

Root directory for dataset
dataroot = "data/celeba"

Number of workers for dataloader
workers = 2

Batch size during training
batch size = 128

Spatial size of training images. All images will be resized to this
size using a transformer.

#image size = 64

image size = 32

Number of channels in the training images. For color images this is 3
#nc = 3
nc =1

Size of z latent vector (i.e. size of generator input)
nz = 100

Size of feature maps in generator
#ngf = 64
ngf = 8

Size of feature maps in discriminator
#ndf = 64
ndf = 8

Number of training epochs

num _epochs = 5

Learning rate for optimizers
lr = 0.0002

Betal hyperparam for Adam optimizers
betal = 0.5

Number of GPUs available. Use 0 for CPU mode.

ngpu = 1
Random Seed: 999

Data

We will use MNIST instead of CelebA as in the original tutorial

In [3]:

dataset = dset.MNIST(
'data'’, train=True, download=True,
transform=transforms.Compose ([
transforms.Resize(image size), # Resize from 28 x 28 to 32 x 32
(so power of 2)
transforms.CenterCrop(image size),
transforms.ToTensor (),
transforms.Normalize((0.5,), (0.5,))

1))

Create the dataloader

dataloader = torch.utils.data.Dataloader (dataset, batch size=batch size,
shuffle=True, num workers=worke

rs)

Decide which device we want to run on
device = torch.device('"cuda:0" if (torch.cuda.is available() and ngpu >
0) else "cpu")

Plot some training images

real batch = next(iter(dataloader))

plt.figure(figsize=(8,8))

plt.axis("off")

plt.title("Training Images")
plt.imshow(np.transpose(vutils.make grid(real batch[0].to(device)[:64],
padding=2, normalize=True).cpu(),(1,2,0)))

out[3]:

0it [00:00, ?it/s]

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
to data/MNIST/raw/train-images-idx3-ubyte.gz

9920512it [00:00, 11036156.56it/s]
Extracting data/MNIST/raw/train-images-idx3-ubyte.gz

32768it [00:00, 206851.80it/s]
0it [00:00, 2it/s]

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idxl-ubyte.gz
to data/MNIST/raw/train-labels-idxl-ubyte.gz

Extracting data/MNIST/raw/train-labels-idxl-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
to data/MNIST/raw/tl0k-images-idx3-ubyte.gz

1654784it [00:00, 4557841.36it/s]
0it [00:00, ?it/s]

Extracting data/MNIST/raw/tl0k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/tl10k-labels-idxl-ubyte.gz
to data/MNIST/raw/tl0k-labels-idxl-ubyte.gz

8192it [00:00, 56578.24it/s]

Extracting data/MNIST/raw/tl0k-labels-idxl-ubyte.gz
Processing...
Done!

<matplotlib.image.AxesImage at 0x121b82cf8>

Training Images

w e~ 00 gHhh -
-~ W~wra/nN-wo
N o &/ oy A,

% 2
g4 O 9
4 5 b
67 1R
4 4 ¢ 5
09377
3 1/
8775

In [4]: # custom weights initialization called on netG and netD
def weights init(m):

classname = m. class . name

if classname.find('Conv') != -1:
nn.init.normal (m.weight.data, 0.0, 0.02)

elif classname.find('BatchNorm') != -1:
nn.init.normal (m.weight.data, 1.0, 0.02)
nn.init.constant (m.bias.data, 0)

In [16]:

Generator Code
class Generator(nn.Module):
def init (self, ngpu):
super (Generator, self). init ()
self.ngpu = ngpu
self.main = nn.Sequential(

input is Z, going into a convolution, state size. nz x 1 x

nn.ConvTranspose2d(nz, ngf * 4, kernel size=4, stride=1l, pa

dding=0, bias=False),

)

nn.BatchNorm2d(ngf * 4),

nn.ReLU(True), # inplace ReLU

current state size. (ngf*4) x 4 x 4
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),

nn.ReLU(True),

current state size. (ngf*2) x 8 x 8

nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),

nn.ReLU(True),

current state size. ngf x 16 x 16

nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),

current state size. nc x 32 x 32

nn.Tanh() # Produce number between 0 and 1 for pixel values

def forward(self, input):
return self.main(input)

Create the generator
netG = Generator(ngpu).to(device)

Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):

netG

nn.DataParallel (netG, list(range(ngpu)))

Apply the weights init function to randomly initialize all weights
to mean=0, stdev=0.2.
netG.apply(weights init)

Print the model

print(netG)

Generator (
(main): Sequential(

(0): ConvTranspose2d(100, 32, kernel size=(4, 4), stride=(1l, 1), bi
as=False)

(1): BatchNorm2d (32, eps=le-05, momentum=0.1, affine=True, track ru
nning stats=True)

(2): ReLU(inplace)

(3): ConvTranspose2d(32, 16, kernel size=(4, 4), stride=(2, 2), pad
ding=(1, 1), bias=False)

(4): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track ru
nning stats=True)

(5): ReLU(inplace)

(6): ConvTranspose2d(l6, 8, kernel size=(4, 4), stride=(2, 2), padd
ing=(1, 1), bias=False)

(7): BatchNorm2d (8, eps=1le-05, momentum=0.1, affine=True, track run
ning stats=True)

(8): ReLU(inplace)

(9): ConvTranspose2d(8, 1, kernel size=(4, 4), stride=(2, 2), paddi
ng=(1l, 1), bias=False)

(10): Tanh()

)

Discriminator ~~~~~

As mentioned, the discriminator, D, is a binary classification network that takes an image as input and outputs a
scalar probability that the input image is real (as opposed to fake). Here, D takes a 3x64x64 input image,
processes it through a series of Conv2d, BatchNorm2d, and LeakyReLU layers, and outputs the final probability
through a Sigmoid activation function. This architecture can be extended with more layers if necessary for the
problem, but there is significance to the use of the strided convolution, BatchNorm, and LeakyRelLUs. The
DCGAN paper mentions it is a good practice to use strided convolution rather than pooling to downsample
because it lets the network learn its own pooling function. Also batch norm and leaky relu functions promote
healthy gradient flow which is critical for the learning process of both G and D.

Discriminator Code

In [17]: class Discriminator(nn.Module):
def init (self, ngpu):

super(Discriminator, self). init ()

self.ngpu = ngpu

self.main = nn.Sequential(
input is (nc) x 32 x 32
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf) x 16 x 16
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*2) x 8 x 8
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*4) x 4 x 4
nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
state size. (ndf*4) x 1 x 1
nn.Sigmoid() # Produce probability

)

def forward(self, input):
return self.main(input)

Create the Discriminator
netD = Discriminator(ngpu).to(device)

Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
netD = nn.DataParallel(netD, list(range(ngpu)))

Apply the weights init function to randomly initialize all weights
to mean=0, stdev=0.2.
netD.apply(weights init)

Print the model
print(netD)

~ e~~~

Loss Functions and Optimizers

With D and G setup, we can specify how they learn through the loss functions and optimizers. We will use the
Binary Cross Entropy loss (BCELoss
<https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss> _) function which is defined in
PyTorch as:

I/ﬂ(x’y) =L= {lla---,lN}T’ ln == [yn 'logxn +(1 _yn) IOg(l _xn)]

Notice how this function provides the calculation of both log components in the objective function (i.e.
log(D(x)) and log(1 — D(G(z)))). We can specify what part of the BCE equation to use with the y input. This
is accomplished in the training loop which is coming up soon, but it is important to understand how we can
choose which component we wish to calculate just by changing y (i.e. GT labels).

Next, we define our real label as 1 and the fake label as 0. These labels will be used when calculating the losses
of D and (G, and this is also the convention used in the original GAN paper. Finally, we set up two separate
optimizers, one for D and one for G. As specified in the DCGAN paper, both are Adam optimizers with learning
rate 0.0002 and Betal = 0.5. For keeping track of the generator’s learning progression, we will generate a fixed
batch of latent vectors that are drawn from a Gaussian distribution (i.e. fixed_noise) . In the training loop, we will
periodically input this fixed_noise into G, and over the iterations we will see images form out of the noise.

In [9]: | # Initialize BCELoss function
criterion = nn.BCELoss()

Create batch of latent vectors that we will use to visualize
the progression of the generator
fixed noise = torch.randn(64, nz, 1, 1, device=device)

Establish convention for real and fake labels during training
real label =1
fake label = 0

Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=1lr, betas=(betal, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=1lr, betas=(betal, 0.999))

Training ~~~~

Finally, now that we have all of the parts of the GAN framework defined, we can train it. Be mindful that training
GANs is somewhat of an art form, as incorrect hyperparameter settings lead to mode collapse with little
explanation of what went wrong. Here, we will closely follow Algorithm 1 from Goodfellow’s paper, while abiding
by some of the best practices shown in ganhacks <https://github.com/soumith/ganhacks> _ .
Namely, we will “construct different mini-batches for real and fake” images, and also adjust G’s objective
function to maximize log D(G(z)). Training is split up into two main parts. Part 1 updates the Discriminator and
Part 2 updates the Generator.

Part 1 - Train the Discriminator

Recall, the goal of training the discriminator is to maximize the probability of correctly classifying a given input
as real or fake. In terms of Goodfellow, we wish to “update the discriminator by ascending its stochastic
gradient”. Practically, we want to maximize log(D(x)) + log(1 — D(G(z))). Due to the separate mini-batch
suggestion from ganhacks, we will calculate this in two steps. First, we will construct a batch of real samples
from the training set, forward pass through D, calculate the loss (log(D(x))), then calculate the gradients in a
backward pass. Secondly, we will construct a batch of fake samples with the current generator, forward pass
this batch through D, calculate the loss (log(1 — D(G(z)))), and accumulate the gradients with a backward
pass. Now, with the gradients accumulated from both the all-real and all-fake batches, we call a step of the
Discriminator’s optimizer.

Part 2 - Train the Generator

As stated in the original paper, we want to train the Generator by minimizing log(1 — D(G(z))) in an effort to
generate better fakes. As mentioned, this was shown by Goodfellow to not provide sufficient gradients,
especially early in the learning process. As a fix, we instead wish to maximize log(D(G(z))). In the code we
accomplish this by: classifying the Generator output from Part 1 with the Discriminator, computing G’s loss
using real labels as GT, computing G’s gradients in a backward pass, and finally updating G’s parameters with
an optimizer step. It may seem counter-intuitive to use the real labels as GT labels for the loss function, but this
allows us to use the log(x) part of the BCELoss (rather than the log(1 — x) part) which is exactly what we
want.

Finally, we will do some statistic reporting and at the end of each epoch we will push our fixed_noise batch
through the generator to visually track the progress of G’s training. The training statistics reported are:

» Loss_D - discriminator loss calculated as the sum of losses for the all real and all fake batches (
log(D(x)) + log(D(G(2)))).

» Loss_G - generator loss calculated as log(D(G(z)))

» D(x) - the average output (across the batch) of the discriminator for the all real batch. This should start
close to 1 then theoretically converge to 0.5 when G gets better. Think about why this is.

» D(G(2)) - average discriminator outputs for the all fake batch. The first number is before D is updated and
the second number is after D is updated. These numbers should start near 0 and converge to 0.5 as G gets
better. Think about why this is.

Note: This step might take a while, depending on how many epochs you run and if you removed some data
from the dataset.

In [10]: # Training Loop

Lists to keep track of progress
img list = []

G losses = []

D losses = []

iters = 0

print("Starting Training Loop...")
For each epoch
for epoch in range(num epochs):
For each batch in the dataloader
for i, data in enumerate(dataloader, 0):

T 77777 77

(1) Update D network: maximize log(D(x)) + log(l - D(G(z)))

L Al Ah Al AL LA AL AL AL AL, AL AL

Train with all-real batch

netD.zero _grad()

Format batch

real cpu = data[0].to(device)

b size = real cpu.size(0)

label = torch.full((b_size,), real label, device=device)
Forward pass real batch through D

output = netD(real cpu).view(-1)

Calculate loss on all-real batch

errD real = criterion(output, label)

Calculate gradients for D in backward pass
errD real.backward()

D x = output.mean().item()

Train with all-fake batch

Generate batch of latent vectors

noise = torch.randn(b size, nz, 1, 1, device=device)
Generate fake image batch with G

fake = netG(noise)

label.fill (fake_label)

Classify all fake batch with D

output = netD(fake.detach()).view(-1)

Calculate D's loss on the all-fake batch

errD fake = criterion(output, label)

Calculate the gradients for this batch

errD fake.backward()

D G zl = output.mean().item()

Add the gradients from the all-real and all-fake batches
errD = errD real + errD fake

Update D

optimizerD.step()

(2) Update G network: maximize log(D(G(z)))

BHBFRFFAFFFH BB R A

netG.zero grad()

label.fill (real_label) # fake labels are real for generator co
st

Since we just updated D, perform another forward pass of all-f

ake batch through D

output = netD(fake).view(-1)

Calculate G's loss based on this output
errG = criterion(output, label)

Calculate gradients for G
errG.backward()

D G z2 = output.mean().item()

Update G

optimizerG.step()

Output training stats
if i $ 50 == 0:
print('[%d/%d][%d/%d]\tLoss D: %.4f\tLoss G: %.4f\tD(x): %.4

£\tD(G(z)): %.4f / %.4f'

_noise

% (epoch, num epochs, i, len(dataloader),
errD.item(), errG.item(), D x, D G zl, D G z2))

Save Losses for plotting later
G _losses.append(errG.item())
D losses.append(errD.item())

Check how the generator is doing by saving G's output on fixed

if (iters % 500 == 0) or ((epoch == num epochs-1) and (i == len(

dataloader)-1)):

True))

with torch.no grad():
fake = netG(fixed noise).detach().cpu()
img list.append(vutils.make grid(fake, padding=2, normalize=

iters +=1

Starting Training Loop...

[0/5]1[0/469]

(z)): 0.4852 /
[0/5]1[50/469]

(z)): 0.2998 /
[0/5]1[100/469]
(z)): 0.1257 /
[0/5]1[150/469]
(z)): 0.0590 /
[0/5]1[200/469]
(z)): 0.0410 /
[0/5]1[250/469]
(z)): 0.0278 /
[0/5]1[300/469]
(z)): 0.0187 /
[0/5]1[350/469]
(z)): 0.0169 /
[0/5]1[400/469]
(z)): 0.0127 /
[0/5]1[450/469]
(z)): 0.0115 /
[1/5]1[0/469]

(z)): 0.0096 /
[1/5]1[50/469]

(z)): 0.0081 /
[1/5][100/469]
(z)): 0.0057 /
[1/5]1[150/469]
(z)): 0.0059 /
[1/5]1[200/469]
(z)): 0.0046 /
[1/5]1[250/469]
(z)): 0.0267 /
[1/5]1[300/469]
(z)): 0.0212 /
[1/5]1[350/469]
(z)): 0.0122 /
[1/5][400/469]
(z)): 0.0094 /
[1/5]1[450/469]
(z)): 0.0297 /
[2/51[0/469]

(z)): 0.0339 /
[2/5]1[50/469]

(z)): 0.0218 /
[2/5]1[100/469]
(z)): 0.2384 /
[2/5]1[150/469]
(z)): 0.0536 /
[2/5]1[200/469]
(z)): 0.0233 /
[2/5]1[250/469]
(z)): 0.3544 /
[2/5]1[300/469]
(z)): 0.9917 /
[2/5]1[350/469]
(z)): 0.0144 /

Loss_D:
0.4646
Loss_D:
0.2457
Loss_D:
0.0850
Loss_D:
0.0508
Loss D:
0.0367
Loss_D:
0.0252
Loss_D:
0.0175
Loss D:
0.0152
Loss_D:
0.0114
Loss_D:
0.0098
Loss D:
0.0085
Loss_D:
0.0073
Loss_D:
0.0052
Loss D:
0.0046
Loss_D:
0.0031
Loss_D:
0.0174
Loss_D:
0.0134
Loss_D:
0.0137
Loss_D:
0.0152
Loss _D:
0.0234
Loss_D:
0.0202
Loss_D:
0.0163
Loss_D:
0.2087
Loss_D:
0.0211
Loss_D:
0.0146
Loss_D:
0.2608
Loss_D:
0.0041
Loss_D:
0.0119

1.2262

0.5651

0.2735

0.1213

0.0612

0.0408

0.0240

0.0203

0.0150

0.0139

0.0118

0.0099

0.0074

0.0085

0.0071

0.0466

0.0391

0.0311

0.0284

0.0650

0.0666

0.0436

0.5480

0.0993

0.0386

0.7795

5.2035

0.0523

Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_G:
Loss_ G:
Loss_G:

Loss_G:

.7743

.4237

.5098

.0445

.3929

.8207

.1598

.3342

.6336

.8258

.9176

.0373

.3453

.4442

.8664

.1165

.4494

.4097

.3807

.0385

.0516

.4736

.6110

.0572

.5503

.4861

.6033

.5947

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

D(x):

.5771

.8186

.8761

.9446

.9811

.9882

.9949

.9968

.9978

.9977

.9978

.9982

.9983

.9974

.9975

.9808

.9827

.9817

.9814

.9672

.9691

.9791

.7758

.9596

.9854

.7561

.9978

.9649

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

D(G

[2/5][400/469] Loss D: 0.0642 Loss G: 3.9895 D(x): 0.9716 D(G
(z)): 0.0340 / 0.0237
[2/5][450/469] Loss D: 0.1082 Loss G: 3.2428 D(x): 0.9244 D(G
(z)): 0.0261 / 0.0460
[3/51[0/469] Loss D: 0.1178 ©Loss G: 3.3015 D(x): 0.9336 D(G
(z)): 0.0454 / 0.0454
[3/5][50/469] Loss D: 0.2780 Loss _G: 3.1929 D(x): 0.9526 D(G
(z)): 0.1946 / 0.0517
[3/5][100/469] Loss D: 0.1359 Loss G: 3.2587 D(x): 0.9148 D(G
(z)): 0.0410 / 0.0478
[3/5][150/469] Loss D: 0.3163 Loss G: 2.6980 D(x): 0.8502 D(G
(z)): 0.1284 / 0.0881
[3/5][200/469] Loss D: 0.2121 Loss G: 3.1579 D(x): 0.9446 D(G
(z)): 0.1390 / 0.0501
[3/5][250/469] Loss D: 3.4731 Loss G: 6.1782 D(x): 0.9993 D(G
(z)): 0.9596 / 0.0024
[3/5]1[300/469] Loss D: 0.6767 Loss G: 3.1966 D(x): 0.9785 D(G
(z)): 0.4618 / 0.0456
[3/5][350/469] Loss D: 0.8148 Loss G: 1.4803 D(x): 0.6951 D(G
(z)): 0.3353 / 0.2468
[3/5][400/469] Loss D: 0.7527 Loss _G: 0.5340 D(x): 0.5290 D(G
(z)): 0.0144 / 0.6055
[3/5][450/469] Loss D: 0.2606 Loss G: 2.6242 D(x): 0.9148 D(G
(z)): 0.1503 / 0.0872
[4/5][0/469] Loss D: 0.2843 Loss G: 2.2676 D(x): 0.8648 D(G
(z)): 0.1204 / 0.1198
[4/5]1[50/469] Loss D: 0.2856 Loss G: 2.4114 D(x): 0.8694 D(G
(z)): 0.1281 / 0.1056
[4/5][100/469] Loss D: 0.2516 Loss _G: 2.2890 D(x): 0.8684 D(G
(z)): 0.0966 / 0.1220
[4/5][150/469] Loss D: 0.5598 Loss G: 1.0730 D(x): 0.6373 D(G
(z)): 0.0626 / 0.3798
[4/5][200/469] Loss D: 0.4369 Loss G: 1.3019 D(x): 0.7011 D(G
(z)): 0.0454 / 0.3036
[4/5][250/469] Loss D: 0.2653 ©Loss_G: 2.5762 D(x): 0.8701 D(G
(z)): 0.1100 / 0.0920
[4/5][300/469] Loss D: 0.3553 Loss G: 2.9089 D(x): 0.9060 D(G
(z)): 0.2116 / 0.0704
[4/5][350/469] Loss D: 0.3657 Loss G: 1.3084 D(x): 0.7577 D(G
(z)): 0.0686 / 0.3072
[4/5][400/469] Loss D: 0.4814 Loss G: 2.6518 D(x): 0.8686 D(G
(z)): 0.2711 / 0.0852
[4/5][450/469] Loss D: 0.6150 Loss G: 1.2039 D(x): 0.5926 D(G
(z)): 0.0257 / 0.3321

Results

Finally, lets check out how we did. Here, we will look at three different results. First, we will see how D and G’s
losses changed during training. Second, we will visualize G’s output on the fixed_noise batch for every epoch.
And third, we will look at a batch of real data next to a batch of fake data from G.

Loss versus training iteration

Below is a plot of D & G’s losses versus training iterations.

In [11]: plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D _losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()

plt.show()
Generator and Discriminator Loss During Training
10~ —_— G
O
B
B -
@
s
4 4
) 'H' (T
04 L
0 500 1000 1500 2000

iterations

Visualization of G’s progression

Remember how we saved the generator’s output on the fixed_noise batch after every epoch of training. Now,
we can visualize the training progression of G with an animation. Press the play button to start the animation.

In [12]: #8%capture
fig = plt.figure(figsize=(8,8))
plt.axis("off")

ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img
_list]

ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat delay=10
00, blit=True)

HTML (ani.to_ jshtml())

Oout[12]:

= || 4 | L NIN NI 2 M M| +
(O Once @ Loop O Reflect

Lt S RN I I o
\adiias SNl T SRS S
Dl GN8N N
Mo o -

3 ™~ ML WS~ -
SN ~-BV-qy T
O O v v 5 =2 g DL
SRS Ao e WL v IR ¢ N

vs. Fake Images

Real Images

d fake images side by side.

images an

al

Finally, lets take a look at some re

In [13]:

Grab a batch of real images from the dataloader

real batch = next(iter(dataloader))

Plot the real images

plt.
plt.
plt.
plt.
plt.

figure(figsize=(15,15))

subplot(1,2,1)

axis("off")

title("Real Images")
imshow(np.transpose(vutils.make grid(real batch[0].to(device)[:64],

padding=5, normalize=True).cpu(),(1,2,0)))

Plot the fake images from the last epoch

plt.
plt.
plt.
plt.
plt.

O
R

!
3
q
4
!
R
2

subplot(1,2,2)

axis("off")

title("Fake Images")
imshow(np.transpose(img list[-1],(1,2,0)))
show ()

Real Images Fake Images

£
v
ﬁ
9
Y
y:
2

6 7
O 7
(o) &
¢ 7
4 &
4 S
3 7
Y o

W N 2N

WeasJ G~~~ Co
L Q -y gy

& ¥ 7
’ AT
f 7
a g 53
A LA e,
/s : &
7 s 7
7 3 4

vy ¢
? 7
|
7 8
G 3
L g
2.7
Qg

wi,snYywudse

0 4
a b /
| g 2
g 1 O
/7 G |
A 90
TS 7
§ 5 4

L

N

Where to Go Next

We have reached the end of our journey, but there are several places you could go from here. You could:

Train for longer to see how good the results get
Modify this model to take a different dataset and possibly change the size of the images and the model

architecture

Check out some other cool GAN projects here <https://github.com/nashory/gans-awesome-

applications> __
Create GANSs that generate music <https://deepmind.com/blog/wavenet-generative-model-

raw-audio/>

