
In [1]: %matplotlib inline 

Edited version of PyTorch DCGAN tutorial for
MNIST
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
(https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html) Main edits: Edited the architecture and
parameters to work for MNIST instead of CelebA but kept structure otherwise the same

DCGAN Tutorial
Author: Nathan Inkawhich <https://github.com/inkawhich> __

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html


In [2]: from __future__ import print_function 
#%matplotlib inline 
import argparse 
import os 
import random 
import torch 
import torch.nn as nn 
import torch.nn.parallel 
import torch.backends.cudnn as cudnn 
import torch.optim as optim 
import torch.utils.data 
import torchvision.datasets as dset
import torchvision.transforms as transforms 
import torchvision.utils as vutils 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
from IPython.display import HTML 
 
# Set random seed for reproducibility 
manualSeed = 999 
#manualSeed = random.randint(1, 10000) # use if you want new results 
print("Random Seed: ", manualSeed) 
random.seed(manualSeed) 
torch.manual_seed(manualSeed) 
 
# Root directory for dataset 
dataroot = "data/celeba" 
 
# Number of workers for dataloader 
workers = 2 
 
# Batch size during training 
batch_size = 128 
 
# Spatial size of training images. All images will be resized to this 
#   size using a transformer. 
#image_size = 64 
image_size = 32 
 
# Number of channels in the training images. For color images this is 3 
#nc = 3 
nc = 1  
 
# Size of z latent vector (i.e. size of generator input) 
nz = 100 
 
# Size of feature maps in generator 
#ngf = 64 
ngf = 8 
 
# Size of feature maps in discriminator 
#ndf = 64 
ndf = 8 
 
# Number of training epochs 



num_epochs = 5 
 
# Learning rate for optimizers 
lr = 0.0002 
 
# Beta1 hyperparam for Adam optimizers 
beta1 = 0.5 
 
# Number of GPUs available. Use 0 for CPU mode. 
ngpu = 1 

Data
We will use MNIST instead of CelebA as in the original tutorial

Random Seed:  999 



In [3]: dataset = dset.MNIST( 
    'data', train=True, download=True, 
   transform=transforms.Compose([ 
       transforms.Resize(image_size), # Resize from 28 x 28 to 32 x 32
 (so power of 2) 
       transforms.CenterCrop(image_size), 
       transforms.ToTensor(), 
       transforms.Normalize((0.5,), (0.5,)) 
   ]))  
 
# Create the dataloader 
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, 
                                         shuffle=True, num_workers=worke
rs) 
 
# Decide which device we want to run on 
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 
0) else "cpu") 
 
# Plot some training images 
real_batch = next(iter(dataloader)) 
plt.figure(figsize=(8,8)) 
plt.axis("off") 
plt.title("Training Images") 
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], 
padding=2, normalize=True).cpu(),(1,2,0))) 



0it [00:00, ?it/s]

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz 
to data/MNIST/raw/train-images-idx3-ubyte.gz 

9920512it [00:00, 11036156.56it/s]                             

Extracting data/MNIST/raw/train-images-idx3-ubyte.gz 

32768it [00:00, 206851.80it/s]            
0it [00:00, ?it/s]

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz 
to data/MNIST/raw/train-labels-idx1-ubyte.gz 
Extracting data/MNIST/raw/train-labels-idx1-ubyte.gz 
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 
to data/MNIST/raw/t10k-images-idx3-ubyte.gz 

1654784it [00:00, 4557841.36it/s]                             
0it [00:00, ?it/s]

Extracting data/MNIST/raw/t10k-images-idx3-ubyte.gz 
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 
to data/MNIST/raw/t10k-labels-idx1-ubyte.gz 

8192it [00:00, 56578.24it/s]             

Extracting data/MNIST/raw/t10k-labels-idx1-ubyte.gz 
Processing... 
Done! 

Out[3]: <matplotlib.image.AxesImage at 0x121b82cf8>



In [4]: # custom weights initialization called on netG and netD 
def weights_init(m):
    classname = m.__class__.__name__ 
    if classname.find('Conv') != -1: 
        nn.init.normal_(m.weight.data, 0.0, 0.02) 
    elif classname.find('BatchNorm') != -1: 
        nn.init.normal_(m.weight.data, 1.0, 0.02) 
        nn.init.constant_(m.bias.data, 0) 



In [16]: # Generator Code 
class Generator(nn.Module): 
    def __init__(self, ngpu): 
        super(Generator, self).__init__() 
        self.ngpu = ngpu 
        self.main = nn.Sequential( 
            # input is Z, going into a convolution, state size. nz x 1 x 
1 
            nn.ConvTranspose2d( nz, ngf * 4, kernel_size=4, stride=1, pa
dding=0, bias=False), 
            nn.BatchNorm2d(ngf * 4), 
            nn.ReLU(True), # inplace ReLU 
            # current state size. (ngf*4) x 4 x 4 
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), 
            nn.BatchNorm2d(ngf * 2), 
            nn.ReLU(True), 
            # current state size. (ngf*2) x 8 x 8 
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False), 
            nn.BatchNorm2d(ngf), 
            nn.ReLU(True), 
            # current state size. ngf x 16 x 16 
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False), 
            # current state size. nc x 32 x 32  
            nn.Tanh() # Produce number between 0 and 1 for pixel values 
        ) 
 
    def forward(self, input): 
        return self.main(input) 
 
# Create the generator 
netG = Generator(ngpu).to(device) 
 
# Handle multi-gpu if desired 
if (device.type == 'cuda') and (ngpu > 1): 
    netG = nn.DataParallel(netG, list(range(ngpu))) 
 
# Apply the weights_init function to randomly initialize all weights 
#  to mean=0, stdev=0.2. 
netG.apply(weights_init) 
 
# Print the model 
print(netG) 



Discriminator ~~~~~

As mentioned, the discriminator, , is a binary classification network that takes an image as input and outputs a
scalar probability that the input image is real (as opposed to fake). Here,  takes a 3x64x64 input image,
processes it through a series of Conv2d, BatchNorm2d, and LeakyReLU layers, and outputs the final probability
through a Sigmoid activation function. This architecture can be extended with more layers if necessary for the
problem, but there is significance to the use of the strided convolution, BatchNorm, and LeakyReLUs. The
DCGAN paper mentions it is a good practice to use strided convolution rather than pooling to downsample
because it lets the network learn its own pooling function. Also batch norm and leaky relu functions promote
healthy gradient flow which is critical for the learning process of both  and .

𝐷

𝐷

𝐺 𝐷

Discriminator Code

Generator( 
  (main): Sequential( 
    (0): ConvTranspose2d(100, 32, kernel_size=(4, 4), stride=(1, 1), bi
as=False) 
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_ru
nning_stats=True) 
    (2): ReLU(inplace) 
    (3): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), pad
ding=(1, 1), bias=False) 
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_ru
nning_stats=True) 
    (5): ReLU(inplace) 
    (6): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padd
ing=(1, 1), bias=False) 
    (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True) 
    (8): ReLU(inplace) 
    (9): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), paddi
ng=(1, 1), bias=False) 
    (10): Tanh() 
  ) 
) 



In [17]: class Discriminator(nn.Module): 
    def __init__(self, ngpu): 
        super(Discriminator, self).__init__() 
        self.ngpu = ngpu 
        self.main = nn.Sequential( 
            # input is (nc) x 32 x 32  
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), 
            nn.LeakyReLU(0.2, inplace=True), 
            # state size. (ndf) x 16 x 16 
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), 
            nn.BatchNorm2d(ndf * 2), 
            nn.LeakyReLU(0.2, inplace=True), 
            # state size. (ndf*2) x 8 x 8  
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), 
            nn.BatchNorm2d(ndf * 4), 
            nn.LeakyReLU(0.2, inplace=True), 
            # state size. (ndf*4) x 4 x 4 
            nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False), 
            # state size. (ndf*4) x 1 x 1 
            nn.Sigmoid()  # Produce probability 
        ) 
 
    def forward(self, input): 
        return self.main(input) 
 
# Create the Discriminator 
netD = Discriminator(ngpu).to(device) 
 
# Handle multi-gpu if desired 
if (device.type == 'cuda') and (ngpu > 1): 
    netD = nn.DataParallel(netD, list(range(ngpu))) 
     
# Apply the weights_init function to randomly initialize all weights 
#  to mean=0, stdev=0.2. 
netD.apply(weights_init) 
 
# Print the model 
print(netD) 



Loss Functions and Optimizers ~~~~~~~~~

With  and  setup, we can specify how they learn through the loss functions and optimizers. We will use the
Binary Cross Entropy loss ( BCELoss 
<https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss> __) function which is defined in
PyTorch as:

Notice how this function provides the calculation of both log components in the objective function (i.e. 
 and ). We can specify what part of the BCE equation to use with the  input. This

is accomplished in the training loop which is coming up soon, but it is important to understand how we can
choose which component we wish to calculate just by changing  (i.e. GT labels).

Next, we define our real label as 1 and the fake label as 0. These labels will be used when calculating the losses
of  and , and this is also the convention used in the original GAN paper. Finally, we set up two separate
optimizers, one for  and one for . As specified in the DCGAN paper, both are Adam optimizers with learning
rate 0.0002 and Beta1 = 0.5. For keeping track of the generator’s learning progression, we will generate a fixed
batch of latent vectors that are drawn from a Gaussian distribution (i.e. fixed_noise) . In the training loop, we will
periodically input this fixed_noise into , and over the iterations we will see images form out of the noise.

𝐷 𝐺

ℓ(𝑥, 𝑦) = 𝐿 = { , … , , = − [ ⋅ log + (1 − ) ⋅ log(1 − )]𝑙1 𝑙𝑁 }⊤ 𝑙𝑛 𝑦𝑛 𝑥𝑛 𝑦𝑛 𝑥𝑛

𝑙𝑜𝑔(𝐷(𝑥)) 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) 𝑦

𝑦

𝐷 𝐺

𝐷 𝐺

𝐺

In [9]: # Initialize BCELoss function 
criterion = nn.BCELoss() 
 
# Create batch of latent vectors that we will use to visualize 
#  the progression of the generator 
fixed_noise = torch.randn(64, nz, 1, 1, device=device) 
 
# Establish convention for real and fake labels during training 
real_label = 1 
fake_label = 0 
 
# Setup Adam optimizers for both G and D 
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) 
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) 



Training ~~~~

Finally, now that we have all of the parts of the GAN framework defined, we can train it. Be mindful that training
GANs is somewhat of an art form, as incorrect hyperparameter settings lead to mode collapse with little
explanation of what went wrong. Here, we will closely follow Algorithm 1 from Goodfellow’s paper, while abiding
by some of the best practices shown in ganhacks <https://github.com/soumith/ganhacks> __.
Namely, we will “construct different mini-batches for real and fake” images, and also adjust G’s objective
function to maximize . Training is split up into two main parts. Part 1 updates the Discriminator and
Part 2 updates the Generator.

Part 1 - Train the Discriminator

Recall, the goal of training the discriminator is to maximize the probability of correctly classifying a given input
as real or fake. In terms of Goodfellow, we wish to “update the discriminator by ascending its stochastic
gradient”. Practically, we want to maximize . Due to the separate mini-batch
suggestion from ganhacks, we will calculate this in two steps. First, we will construct a batch of real samples
from the training set, forward pass through , calculate the loss ( ), then calculate the gradients in a
backward pass. Secondly, we will construct a batch of fake samples with the current generator, forward pass
this batch through , calculate the loss ( ), and accumulate the gradients with a backward
pass. Now, with the gradients accumulated from both the all-real and all-fake batches, we call a step of the
Discriminator’s optimizer.

Part 2 - Train the Generator

As stated in the original paper, we want to train the Generator by minimizing  in an effort to
generate better fakes. As mentioned, this was shown by Goodfellow to not provide sufficient gradients,
especially early in the learning process. As a fix, we instead wish to maximize . In the code we
accomplish this by: classifying the Generator output from Part 1 with the Discriminator, computing G’s loss
using real labels as GT, computing G’s gradients in a backward pass, and finally updating G’s parameters with
an optimizer step. It may seem counter-intuitive to use the real labels as GT labels for the loss function, but this
allows us to use the  part of the BCELoss (rather than the  part) which is exactly what we
want.

Finally, we will do some statistic reporting and at the end of each epoch we will push our fixed_noise batch
through the generator to visually track the progress of G’s training. The training statistics reported are:

Loss_D - discriminator loss calculated as the sum of losses for the all real and all fake batches (
).

Loss_G - generator loss calculated as 
D(x) - the average output (across the batch) of the discriminator for the all real batch. This should start
close to 1 then theoretically converge to 0.5 when G gets better. Think about why this is.
D(G(z)) - average discriminator outputs for the all fake batch. The first number is before D is updated and
the second number is after D is updated. These numbers should start near 0 and converge to 0.5 as G gets
better. Think about why this is.

Note: This step might take a while, depending on how many epochs you run and if you removed some data
from the dataset.

𝑙𝑜𝑔𝐷(𝐺(𝑧))

𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝐷 𝑙𝑜𝑔(𝐷(𝑥))

𝐷 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(𝑥) 𝑙𝑜𝑔(1 − 𝑥)

𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(𝐷(𝐺(𝑧)))



In [10]: # Training Loop 
 
# Lists to keep track of progress 
img_list = [] 
G_losses = [] 
D_losses = [] 
iters = 0 
 
print("Starting Training Loop...") 
# For each epoch 
for epoch in range(num_epochs): 
    # For each batch in the dataloader 
    for i, data in enumerate(dataloader, 0): 
         
        ############################ 
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) 
        ########################### 
        ## Train with all-real batch 
        netD.zero_grad() 
        # Format batch 
        real_cpu = data[0].to(device) 
        b_size = real_cpu.size(0) 
        label = torch.full((b_size,), real_label, device=device) 
        # Forward pass real batch through D 
        output = netD(real_cpu).view(-1) 
        # Calculate loss on all-real batch 
        errD_real = criterion(output, label) 
        # Calculate gradients for D in backward pass 
        errD_real.backward() 
        D_x = output.mean().item() 
 
        ## Train with all-fake batch 
        # Generate batch of latent vectors 
        noise = torch.randn(b_size, nz, 1, 1, device=device) 
        # Generate fake image batch with G 
        fake = netG(noise) 
        label.fill_(fake_label) 
        # Classify all fake batch with D 
        output = netD(fake.detach()).view(-1) 
        # Calculate D's loss on the all-fake batch 
        errD_fake = criterion(output, label) 
        # Calculate the gradients for this batch 
        errD_fake.backward() 
        D_G_z1 = output.mean().item() 
        # Add the gradients from the all-real and all-fake batches 
        errD = errD_real + errD_fake 
        # Update D 
        optimizerD.step()
 
        ############################ 
        # (2) Update G network: maximize log(D(G(z))) 
        ########################### 
        netG.zero_grad() 
        label.fill_(real_label)  # fake labels are real for generator co
st 
        # Since we just updated D, perform another forward pass of all-f



ake batch through D 
        output = netD(fake).view(-1) 
        # Calculate G's loss based on this output 
        errG = criterion(output, label) 
        # Calculate gradients for G 
        errG.backward() 
        D_G_z2 = output.mean().item() 
        # Update G 
        optimizerG.step()
         
        # Output training stats 
        if i % 50 == 0: 
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4
f\tD(G(z)): %.4f / %.4f' 
                  % (epoch, num_epochs, i, len(dataloader), 
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) 
         
        # Save Losses for plotting later 
        G_losses.append(errG.item()) 
        D_losses.append(errD.item()) 
         
        # Check how the generator is doing by saving G's output on fixed
_noise 
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(
dataloader)-1)): 
            with torch.no_grad(): 
                fake = netG(fixed_noise).detach().cpu() 
            img_list.append(vutils.make_grid(fake, padding=2, normalize=
True)) 
             
        iters += 1 



Starting Training Loop... 
[0/5][0/469] Loss_D: 1.2262 Loss_G: 0.7743 D(x): 0.5771 D(G
(z)): 0.4852 / 0.4646 
[0/5][50/469] Loss_D: 0.5651 Loss_G: 1.4237 D(x): 0.8186 D(G
(z)): 0.2998 / 0.2457 
[0/5][100/469] Loss_D: 0.2735 Loss_G: 2.5098 D(x): 0.8761 D(G
(z)): 0.1257 / 0.0850 
[0/5][150/469] Loss_D: 0.1213 Loss_G: 3.0445 D(x): 0.9446 D(G
(z)): 0.0590 / 0.0508 
[0/5][200/469] Loss_D: 0.0612 Loss_G: 3.3929 D(x): 0.9811 D(G
(z)): 0.0410 / 0.0367 
[0/5][250/469] Loss_D: 0.0408 Loss_G: 3.8207 D(x): 0.9882 D(G
(z)): 0.0278 / 0.0252 
[0/5][300/469] Loss_D: 0.0240 Loss_G: 4.1598 D(x): 0.9949 D(G
(z)): 0.0187 / 0.0175 
[0/5][350/469] Loss_D: 0.0203 Loss_G: 4.3342 D(x): 0.9968 D(G
(z)): 0.0169 / 0.0152 
[0/5][400/469] Loss_D: 0.0150 Loss_G: 4.6336 D(x): 0.9978 D(G
(z)): 0.0127 / 0.0114 
[0/5][450/469] Loss_D: 0.0139 Loss_G: 4.8258 D(x): 0.9977 D(G
(z)): 0.0115 / 0.0098 
[1/5][0/469] Loss_D: 0.0118 Loss_G: 4.9176 D(x): 0.9978 D(G
(z)): 0.0096 / 0.0085 
[1/5][50/469] Loss_D: 0.0099 Loss_G: 5.0373 D(x): 0.9982 D(G
(z)): 0.0081 / 0.0073 
[1/5][100/469] Loss_D: 0.0074 Loss_G: 5.3453 D(x): 0.9983 D(G
(z)): 0.0057 / 0.0052 
[1/5][150/469] Loss_D: 0.0085 Loss_G: 5.4442 D(x): 0.9974 D(G
(z)): 0.0059 / 0.0046 
[1/5][200/469] Loss_D: 0.0071 Loss_G: 5.8664 D(x): 0.9975 D(G
(z)): 0.0046 / 0.0031 
[1/5][250/469] Loss_D: 0.0466 Loss_G: 4.1165 D(x): 0.9808 D(G
(z)): 0.0267 / 0.0174 
[1/5][300/469] Loss_D: 0.0391 Loss_G: 4.4494 D(x): 0.9827 D(G
(z)): 0.0212 / 0.0134 
[1/5][350/469] Loss_D: 0.0311 Loss_G: 4.4097 D(x): 0.9817 D(G
(z)): 0.0122 / 0.0137 
[1/5][400/469] Loss_D: 0.0284 Loss_G: 4.3807 D(x): 0.9814 D(G
(z)): 0.0094 / 0.0152 
[1/5][450/469] Loss_D: 0.0650 Loss_G: 4.0385 D(x): 0.9672 D(G
(z)): 0.0297 / 0.0234 
[2/5][0/469] Loss_D: 0.0666 Loss_G: 4.0516 D(x): 0.9691 D(G
(z)): 0.0339 / 0.0202 
[2/5][50/469] Loss_D: 0.0436 Loss_G: 4.4736 D(x): 0.9791 D(G
(z)): 0.0218 / 0.0163 
[2/5][100/469] Loss_D: 0.5480 Loss_G: 1.6110 D(x): 0.7758 D(G
(z)): 0.2384 / 0.2087 
[2/5][150/469] Loss_D: 0.0993 Loss_G: 4.0572 D(x): 0.9596 D(G
(z)): 0.0536 / 0.0211 
[2/5][200/469] Loss_D: 0.0386 Loss_G: 4.5503 D(x): 0.9854 D(G
(z)): 0.0233 / 0.0146 
[2/5][250/469] Loss_D: 0.7795 Loss_G: 1.4861 D(x): 0.7561 D(G
(z)): 0.3544 / 0.2608 
[2/5][300/469] Loss_D: 5.2035 Loss_G: 5.6033 D(x): 0.9978 D(G
(z)): 0.9917 / 0.0041 
[2/5][350/469] Loss_D: 0.0523 Loss_G: 4.5947 D(x): 0.9649 D(G
(z)): 0.0144 / 0.0119 



Results
Finally, lets check out how we did. Here, we will look at three different results. First, we will see how D and G’s
losses changed during training. Second, we will visualize G’s output on the fixed_noise batch for every epoch.
And third, we will look at a batch of real data next to a batch of fake data from G.

Loss versus training iteration

Below is a plot of D & G’s losses versus training iterations.

[2/5][400/469] Loss_D: 0.0642 Loss_G: 3.9895 D(x): 0.9716 D(G
(z)): 0.0340 / 0.0237 
[2/5][450/469] Loss_D: 0.1082 Loss_G: 3.2428 D(x): 0.9244 D(G
(z)): 0.0261 / 0.0460 
[3/5][0/469] Loss_D: 0.1178 Loss_G: 3.3015 D(x): 0.9336 D(G
(z)): 0.0454 / 0.0454 
[3/5][50/469] Loss_D: 0.2780 Loss_G: 3.1929 D(x): 0.9526 D(G
(z)): 0.1946 / 0.0517 
[3/5][100/469] Loss_D: 0.1359 Loss_G: 3.2587 D(x): 0.9148 D(G
(z)): 0.0410 / 0.0478 
[3/5][150/469] Loss_D: 0.3163 Loss_G: 2.6980 D(x): 0.8502 D(G
(z)): 0.1284 / 0.0881 
[3/5][200/469] Loss_D: 0.2121 Loss_G: 3.1579 D(x): 0.9446 D(G
(z)): 0.1390 / 0.0501 
[3/5][250/469] Loss_D: 3.4731 Loss_G: 6.1782 D(x): 0.9993 D(G
(z)): 0.9596 / 0.0024 
[3/5][300/469] Loss_D: 0.6767 Loss_G: 3.1966 D(x): 0.9785 D(G
(z)): 0.4618 / 0.0456 
[3/5][350/469] Loss_D: 0.8148 Loss_G: 1.4803 D(x): 0.6951 D(G
(z)): 0.3353 / 0.2468 
[3/5][400/469] Loss_D: 0.7527 Loss_G: 0.5340 D(x): 0.5290 D(G
(z)): 0.0144 / 0.6055 
[3/5][450/469] Loss_D: 0.2606 Loss_G: 2.6242 D(x): 0.9148 D(G
(z)): 0.1503 / 0.0872 
[4/5][0/469] Loss_D: 0.2843 Loss_G: 2.2676 D(x): 0.8648 D(G
(z)): 0.1204 / 0.1198 
[4/5][50/469] Loss_D: 0.2856 Loss_G: 2.4114 D(x): 0.8694 D(G
(z)): 0.1281 / 0.1056 
[4/5][100/469] Loss_D: 0.2516 Loss_G: 2.2890 D(x): 0.8684 D(G
(z)): 0.0966 / 0.1220 
[4/5][150/469] Loss_D: 0.5598 Loss_G: 1.0730 D(x): 0.6373 D(G
(z)): 0.0626 / 0.3798 
[4/5][200/469] Loss_D: 0.4369 Loss_G: 1.3019 D(x): 0.7011 D(G
(z)): 0.0454 / 0.3036 
[4/5][250/469] Loss_D: 0.2653 Loss_G: 2.5762 D(x): 0.8701 D(G
(z)): 0.1100 / 0.0920 
[4/5][300/469] Loss_D: 0.3553 Loss_G: 2.9089 D(x): 0.9060 D(G
(z)): 0.2116 / 0.0704 
[4/5][350/469] Loss_D: 0.3657 Loss_G: 1.3084 D(x): 0.7577 D(G
(z)): 0.0686 / 0.3072 
[4/5][400/469] Loss_D: 0.4814 Loss_G: 2.6518 D(x): 0.8686 D(G
(z)): 0.2711 / 0.0852 
[4/5][450/469] Loss_D: 0.6150 Loss_G: 1.2039 D(x): 0.5926 D(G
(z)): 0.0257 / 0.3321 



In [11]: plt.figure(figsize=(10,5)) 
plt.title("Generator and Discriminator Loss During Training") 
plt.plot(G_losses,label="G") 
plt.plot(D_losses,label="D") 
plt.xlabel("iterations") 
plt.ylabel("Loss") 
plt.legend() 
plt.show()

Visualization of G’s progression

Remember how we saved the generator’s output on the fixed_noise batch after every epoch of training. Now,
we can visualize the training progression of G with an animation. Press the play button to start the animation.



In [12]: #%%capture 
fig = plt.figure(figsize=(8,8)) 
plt.axis("off") 
ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img
_list] 
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=10
00, blit=True) 
 
HTML(ani.to_jshtml()) 



Out[12]:

               

 Once   Loop   Reflect





Real Images vs. Fake Images

Finally, lets take a look at some real images and fake images side by side.



In [13]: # Grab a batch of real images from the dataloader 
real_batch = next(iter(dataloader)) 
 
# Plot the real images 
plt.figure(figsize=(15,15)) 
plt.subplot(1,2,1) 
plt.axis("off") 
plt.title("Real Images") 
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], 
padding=5, normalize=True).cpu(),(1,2,0))) 
 
# Plot the fake images from the last epoch 
plt.subplot(1,2,2) 
plt.axis("off") 
plt.title("Fake Images") 
plt.imshow(np.transpose(img_list[-1],(1,2,0))) 
plt.show()

Where to Go Next
We have reached the end of our journey, but there are several places you could go from here. You could:

Train for longer to see how good the results get
Modify this model to take a different dataset and possibly change the size of the images and the model
architecture
Check out some other cool GAN projects here <https://github.com/nashory/gans-awesome-
applications> __
Create GANs that generate music <https://deepmind.com/blog/wavenet-generative-model-
raw-audio/> __


