Deep Density Destructors (from a biased viewpoint)

David I. Inouye

Electrical and Computer Engineering
Purdue University

Previous deep normalizing flows are trained end-toend where all components are optimized simultaneously

"Gray box" deep model

David I. Inouye

Modular deep learning would allow *local* learning within each component

Destructive learning enables modular deep learning via "reverse engineering" data

Reverse engineering phone

- 1. Find part to take off using understanding and expertise
- 2. Determine how to take off part in a <u>reversible</u> way (e.g., unscrewing bolts)
- 3. Remove part
- 4. Repeat

Reverse engineering data

- Find patterns in data via shallow/weak learning
- 2. Map model to destructive but <u>invertible</u> transformation
- 3. Destroy the patterns via transformation
- 4. Repeat

Destructive learning enables modular deep

learning via "reverse engineering" data

- Find patterns in data via shallow/weak learning
- 2. Map model to destructive transformation
- 3. Destroy the patterns via transformation
- 4. Repeat

Why use modular weak learning for deep models?

Reuse

The algorithms, insights and intuitions of shallow learning can be lifted into the deep context

Decoupling

Components can be debugged, tested and improved separate from the system

Why use modular weak learning for deep models?

Algorithmic Interpretability

Increasing or decreasing model complexity is straightforward

Resource Constraints

Layer-wise training (memory bottleneck)

Pipelined training (computation bottleneck)

Shallow/weak online learners

Distributed on different processors or devices

Limitations of destructive modular learning

- Unlikely to perform as well as joint learning
 - Greedy vs joint optimization
 - Local vs global optimization
- Must create destructor mapping Ω , which can be challenging

Often requires more layers to achieve similar result because of optimization

Density destructors generalize the univariate CDF transformation

Univariate: CDF transformation

- ▶ The map $\Omega(\mathbb{P}) = D$ should:
 - Encode the density \mathbb{P} into D, i.e. $\exists \Omega^{-1}$.
 - Ensure D destroys all patterns in \mathbb{P} when applied to the random variable, i.e. the distribution of $D_X(X)$ is maximum entropy.
- ▶ A density destructor is an invertible transformation such that $X \sim \mathbb{P}_X$

$$D_X(X) \sim \text{Uniform}([0,1]^d)$$

- ► $\Omega^{-1}(D_X) = |\det J_{D_X}| = \mathbb{P}_X \leftarrow \text{Closed-form density!}$ ► Different from multivariate CDF function: F(x): $\mathbb{R}^d \to [0,1]$

Many shallow densities can be mapped to destructors

Data before (left) and after (right) transformation via corresponding density destructor. Note: Color is just to show correspondence between areas before and after transformation.

Example Destructors

Description	Density	Transformation		
Autoregressive Density	$\prod_{s=1}^d \mathbb{P}_s(x_s oldsymbol{x}_{1:s-1})$	$[F_1(x_1), F_2(x_2 x_1), \ \cdots, F_d(x_d oldsymbol{x}_{1:s-1})]$		
Mixture of Gaussians Conditionals (e.g. MADE, MAF)	$egin{aligned} \prod_{s=1}^d \left[\sum_{t=1}^m \pi_t(oldsymbol{x}_{1:s-1}) imes \ & \mathbb{P}_{\mathcal{N}}(x_s \mu_{st}(oldsymbol{x}_{1:s-1}), \sigma^2_{st}(oldsymbol{x}_{1:s-1})) ight] \end{aligned}$	$egin{bmatrix} \left[F_1(x_1), F_2(x_2 x_1), \\ \cdots, F_d(x_d x_1, \cdots, x_{s-1}) \right] \end{split}$		
Block Gaussian Conditionals (e.g. Real NVP, NICE)	$egin{aligned} \mathbb{P}_{\mathcal{N}}(oldsymbol{x}_{1:t} 0, \mathbf{I}) \ & imes \mathbb{P}_{\mathcal{N}}(oldsymbol{x}_{t+1:d} oldsymbol{\mu}(oldsymbol{x}_{1:t}), oldsymbol{\sigma}^2(oldsymbol{x}_{1:t})) \end{aligned}$	$egin{aligned} \left[\Phi(oldsymbol{x}_{1:t}), \Phi(rac{x_{t+1}-\mu_{t+1}(oldsymbol{x}_{1:t})}{\sigma_{t+1}(oldsymbol{x}_{1:t})}), \ \cdots, \Phi(rac{x_{d}-\mu_{d}(oldsymbol{x}_{1:t})}{\sigma_{d}(oldsymbol{x}_{1:t})}) ight] \end{aligned}$		
Linear Projection Density	$\mathbb{P}_{\psi}(Woldsymbol{x})$	$D_{ heta}(Woldsymbol{x})$		
Independent Components (e.g. Gaussianization via ICA)	$\prod_{s=1}^d \mathbb{P}_s(oldsymbol{w}_s^Toldsymbol{x})$	$oldsymbol{F}(Woldsymbol{x})$		
Gaussian (e.g. via PCA)	$\mathbb{P}_{\mathcal{N}}(oldsymbol{x} oldsymbol{\mu}, \Sigma)$	$\boldsymbol{\Phi}(\Sigma^{-\frac{1}{2}}(\boldsymbol{x}-\boldsymbol{\mu}))$		
Copula-based Density	$\mathbb{P}^{\operatorname{cop}}(oldsymbol{F}(oldsymbol{x}))\prod_{s=1}^d \mathbb{P}_s(x_s)$	$D_{ heta}(oldsymbol{F}(oldsymbol{x}))$		
Gaussian Copula	$\mathbb{P}_R^{\mathcal{N} ext{-}\mathrm{cop}}(oldsymbol{F}(oldsymbol{x}))\prod_{s=1}^d \mathbb{P}_s(x_s)$	$\boldsymbol{\Phi}(R^{-\frac{1}{2}}\boldsymbol{\Phi}^{-1}(\boldsymbol{F}(\boldsymbol{x})))$		
Gaussian Mixture (note that $F_s(x_s \mid \boldsymbol{x}_{-s})$ is computable)	$\sum_{t=1}^{m} \pi_t \mathbb{P}_{\mathcal{N}}(oldsymbol{x})$	$[F_1(x_1), F_2(x_2 x_1), \\ \cdots, F_d(x_d x_1, \cdots, x_{s-1})]$		
Examples of	f new destructors enabled by our unified destructor fra	mework		
Piecewise Density (or Tree Density)	$\{\mathbb{P}_{\psi_{\ell}}(\boldsymbol{x}), \text{ if } \boldsymbol{x} \in \mathcal{L}_{\ell}\},$ where \mathcal{L}_{ℓ} are the disjoint subspaces of the leaves.	$\{D_{ heta_\ell}(oldsymbol{x}), ext{ if } oldsymbol{x} \in \mathcal{L}_\ell\}$		
Piecewise Uniform (e.g. DET)	$\{c_\ell, ext{ if } oldsymbol{x} \in \mathcal{L}_\ell\}$	$\{\operatorname{diag}(oldsymbol{a}_\ell)oldsymbol{x} + oldsymbol{b}_\ell, ext{ if } oldsymbol{x} \in \mathcal{L}_\ell\}$		
Image-Specific Feature Pairs	$\prod_{P\in\mathcal{P}} \mathbb{P}_P(x_{P(1)}, x_{P(2)}),$ where feature pairs \mathcal{P} are based on pixel locality.	$\{D_P(x_{P(1)}, x_{P(2)}), \forall P \in \mathcal{P}\}$		

<u>Deep</u> density destructors via sequence of weak destructors

Data **Weak density** estimation **Train** Data D_1 2nd Layer D_2 8th Layer D_3 53rd Layer

Implicit Model

Density computation and sample generation

Reuse: Deep density destructors can be built from simple and well-understood components

- ► MNIST d = 784
- ightharpoonup CIFAR-10 d = 3072
- Autoregressive flow baselines (DNN-based)
 - MADE [Germain et al., 2015]
 - Real NVP [Dinh, et al. 2017]
 - MAF [Papamakarios et al. 2017]
- Our deep copula method
 - ► PCA + histograms

	MNIST			CIF	CIFAR-10		
	LL	D	Т	LL	D	Т	
Models from MAF paper computed on Titan X GPU							
Gaussian	-1367	1	0.0	2367	1	0.0	
MADE	-1385	1	0.0	448	1	0.2	
MADE MoG	-1042	1	0.1	-53	1	0.3	
Real NVP	-1329	5	0.2	2600	5	1.4	
Real NVP	-1765	10	0.2	2469	10	1.0	
MAF	-1300	5	0.1	2941	5	3.7	
MAF	-1314	10	0.2	3054	10	7.5	
MAF MoG	-1100	5	0.2	2822	5	3.9	
Our proposed destructors computed on 10 CPUs							
Copula	-1028	5	0.2	2626	17	10.1	

LL = Log Likelihood (higher is better)
D = # of layers, T = Time

Modularity enables classical learning improvements to carry over to deep learning

Small-sample experiment where number of dimensions is 63 and number of training samples is 30. Notice how mainstream deep learning fails in this setting.

Density destructor algorithm performs greedy layer-wise construction of deep destructor

1. Simple density estimation (GMM, Gaussian, tree density, etc.)

$$Q^t \leftarrow \arg\min_{Q \in \mathcal{Q}} KL(P(x^{t-1}), Q(x^{t-1}))$$

- 2. Map density to simple destructor layer $d^t = \Omega(Q^t)$
- 3. Transform data for next layer $x^t = d^t(x^{t-1})$
- 4. Update deep destructor $D^t = d^t \circ D^{t-1}$

Destructor algorithm can be shown to monotonically decrease the negative log likelihood after every iteration/layer

- The destructive learning objective, where z = D(x), and $U_z(z)$ is the uniform density function $\arg\min_D KL(P_z(z;D),U(z))$
- ► KL equivalence lemma, let z = D(x) for invertible D $KL(P_x(x), Q_x(x)) = KL(P_z(z), Q_z(z))$
- Simple corollary is that objective above is MLE:
- $ightharpoonup KL(P_z(z; D), U(z))$
- $ightharpoonup = KL(P_x(x), Q_x(x; D))$ (KL equivalence, MLE objective)
- $= KL\left(P_{x}(x), |J_{D}(x)|U(D(x))\right) \text{ (In terms of } D)$
- $ightharpoonup = KL(P_x(x), |J_D(x)|) \ (U(z) = 1)$

<u>Deep</u> density destructors via sequence of weak destructors

Destructor algorithm can be shown to monotonically decrease the negative log likelihood after every iteration/layer

- The destructive learning objective, where z = D(x), and U(z) is the uniform density function $\arg\min_{D} KL(P_{z}(z), U(z))$
- ▶ Want: Every iteration decreases objective: $KL\left(P_z(d^t(x)), U(d^t(x))\right) \le KL\left(P_x(d^{t-1}(x)), U(d^{t-1}(x))\right)$
- Let $x = D^{t-1}(x^{(0)})$ and $z = d^t(x)$
- $ightharpoonup KL(P_z(z; D), U(z))$
- $= KL(P_{x}(x), Q_{x}(x; D))$ (KL equivalence lemma)
- $ightharpoonup \leq KL(P_x(x), Q_x(x; D = Id))$ (minimization is better than one particular)
- $ightharpoonup = KL\left(P_{x}(x), |J_{D}(x)|U(D(x))\right)$ (Expand in terms of D)
- $= KL(P_x(x), U(x))$