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Density estimation finds a density (PDF/PMF) that
represents the data (or empirical distribution) well




Motivation: Density estimation can be used to
uncover underlying structure
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Motivation: Density estimation can be used for
anomaly detection
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https://www.slideshare.net/agramfort/anomalynovelty-detection-with-scikitlearn
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Parametric density estimation assumes
a density model class parameterized by 6

» Assumption: Bernoulli density
6=Ipl, pel01]
» Assumption: Exponential density
0 = [1], ALER,,
> Assumption: Gaussian density
0 = [u, d%], ueER c?€ER,,

» Assumption: DNN-based model
0 = [“all neural network parameters”]
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How do we determine which model in the model
class is the best?

> Classically, people have turned to information
theoretic quantities

> Entropy

» Kullback Liebler (KL) Divergence

> Maximum likelihood estimation (MLE)

> However, there other estimators particularly for
robust estimation

» Regularized estimation

> Robust estimation
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Informally, entropy measures the “amount of
randomness/disorder” of a distribution

> Formally, entropy for discrete
variables

H(P(x)) = E[log P(x)] = z _P(x) log P(x)

> Formally, differential entropy for
continuous variables

H(p()) = E[-logp(x)]
= | —p(x) logp(x) dx

X

» Consider fair coin vs coin where =
both sides are heads

0.5
PriX=1)




Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

> Formally, KL divergence f[or discrete variables

P P
KL(PG), Q) = Bovp [log | = ) PG log g o

> Formally, KL divergence for continuous variables
KL (), () = By |log P | = f p(x) log 2 dix
q(0)| J, q(x)
P/ \ato A0, ¢l
Origuinal Gaussian PbF’s KL Area to be Integrated
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Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

p(x) p(x)
200 me o8 o &

KL(p(x),q(x)) = Ex_, [log

> Not symmetric!

KL(p(x),q(x)) # KL(q(x), p(x))
> Non-negative property
KL(p(x),q(x)) = 0
» Equal distribution property:
KL(p(x),q(x)) = 0 & p(x) = q(x)
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One use of KL divergence is to estimate
distribution parameters only from samples

> Let p(x) denote the real/true distribution of
the data

> p(x) is unknown
> We only have samples {x;}i-; from p(x)

> Let G(x; 8) denote an estimate of the true
distribution

> Parametrized by 0

> We want to find g (x; 8) that is closest to p(x)
0" = argmin KL(p(x), §(x; 6))
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One use of KL divergence is to estimate
distribution parameters only from samples

> We want to find g(x; 8) that is closest to p(x)
0" = argmin KL(p(x), §(x; 6))

» Wait, but we don’t know p(x), how do we do
this?

» Two main ideas for simplification

» Constants with respect to (w.r.t.) 8 can be ignored
> Full expectation replaced by empirical expectation




Derivation of minimum KL divergence
with samples
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Maximum likelihood estimation (MLE) is another way
to estimate distribution parameters from samples

> leellhood function how likely (or probable) a dataset
= {xl} —, is under a distribution with parameters 6

L(O;D) =p(xy, Xy, ., Xp; 0)

> If we assume samples (or observations) of dataset are
independent and identically distributed (iid), then

£(6;D) = ]_[pocl, 0)

» Often simplified to the Iog-llkellhood function

£(0; D) =logL(8;D) =Y.i-,logp(x;; 6)




Maximum likelihood (MLE) is another way to
estimate distribution parameters from samples

> Optimize the following
0* = arg mQaXL(H;D)

» Equivalent to ,
1
0* = arg min — EZ logp(x;; 0)
L=

» Wait, doesn’t that look familiar?

> MLE equivalent to minimum KL divergence!




VILE is not the only way or necessarily the best
distribution estimator

» Corrupt/noisy samples (related to robustness)
» Cashiers using 1111 for birth year: 908 years old
> One star ratings

> Finite (sometimes small) number of samples
> One or two coin flips, Bernoulli
> 1D with one sample, Gaussian
» 2D with two samples, multivariate Gaussian

» Examples: Median or regularized MLE




Multivariate Gaussian

» Definition

> Properties and intuitions

» MILE estimator for multivariate Gaussian




The most ubiquitous multivariate distribution is
the multivariate Gaussian/normal distribution

» Compare univariate to multivariate:
> 1L is mean and X is covariance

p(x) = ! eXp{—l(x_ﬂ)z}

V2mVo? 2 o2
p(xXq, ) Xg)
1 1
= expi—=(x — )7 (x — )
(vV2r) Vdetz { ? }

»® = X1 is called the precision matrix (or inverse covariance)
» ¥ (and ©) must be positive definite X > 0
> (Suppose X = I, suppose u = 0)
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|I)

Multivariate Gaussian is independent “spherica
Gaussian that is rotated and scaled

T
5 = UAUT = (UTA%)(A%UT) =T(UA%)(UA%)
xT(UA_%)(llfA_%) v = (a2ux) (A 20%) = 272

= x = UTA27

1/2
}\2
x1
Machine
Learning, Figure 4.1 Visualization of a 2 dimensional Gaussian density. The major and minor axes of the ellipse
Murphy, are defined by the first two eigenvectors of the covariance matrix, namely u; and us. Based on Figure 2.7

2012. of (Bishop 2006a).
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Marginal and conditional distributions are
Gaussian and can be computed in closed-form

» 2D case:

20. |
X = [le xZ] ~ N(H — [:uluuZ];Z — 1T )

021 J22_
> Marginal distributions:
x; ~N(u= H1;U§ = U]i)
X, ~ N =pz,0° = 0y)
» Conditional distributions:
xi|x, = a

2

012 031
~N<u=u1= 7 (@a—pp), 0% =of )
0, 0,




Gaussian marginals does NOT imply jointly
multivariate Gaussian (converse NOT generally true)

o

N

David I. Inouye



Affine transformations of multivariate Gaussian
vector are also multivariate Gaussian

»Ifx ~ N (u,X) andy = Ax + b, then
y ~ N (Ap + b, AZAT).
» Special case: Marginal distribution when A is:
4. = 1, ifi =k
Lo, otherwise
theny = x;, ~ p(xy).
» Key point: Marginals, conditionals and affine
functions known in closed-form.

> Consequence 1: Easy to manipulate.

» Consequence 2: Gaussians and linear ideas play
nicely with each other.

David I. Inouye




MILE of multivariate Gaussian can be computed
via empirical mean and covariance matrix

> Log-likelihood of muIt)ilvariate Gaussian (u = 0)

—ElongI ~om. 1 xi %7 1x; + const
l=

» Three main identities:
. d log|A| _ A_T

OA
» Tr(xTAx) = Tr(Axx")
. 0Tr(AX) — 4

X

» Hint: Do derivative with respect to 71




Simplification and derivation of MLE for
multivariate Gaussian

n 1
L(Z;D) = Elong_ll — ETF -1 (z xlxlT)




Non-parametric density estimation

» Motivation

> Histograms
> Choosing k
> Choosing bin edges

» Kernel density
» Choosing bandwidth
> Curse of dimensionality again




Why non-parametric density estimates?

> Parametric densities are
excellent if the assumptions are
correct (e.g., Gaussian)

> However, the distributions may
not align with the assumptions




Histograms are the simplest density estimators

» Setup bin locations
> Count number of samples that fall in each bin
> Normalize to be a density
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2D Histograms can be created

David I. Inouye



How to select the number of bins (usually
denoted k)?

» Too few bins will
underfit 3

> Too many bins will
overfit

> ML approach:
CV/Test log likelihood
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Drawbacks: Histograms can depend on bin edges
and are not smooth

Histogram of x X:C(3, 45, 50, 8, 9) Histogram of x
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Kernel densities overcome this drawback by
placing a Gaussian density at each point

> Kernel density has the following form:

n n
1 1
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Similar to number of bins, the key parameter for
kernel densities is the “bandwidth” or o parameter

» Bandwidth can be selected via CV/Test log
likelihood (similar to number of histogram bins)
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