Gaussian Mixture Models (GMM)

ECE57000: Artificial Intelligence
David I. Inouye
Gaussian mixture models (GMM) can be used for density estimation

1. General density estimation

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
Even if each component distribution is independent, the mixture may **not** be independent.

- Each component distribution is spherical (i.e., independent)

Gaussian mixture models (GMM) can be used for flexible clustering

2. Flexible clustering

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
Mixture distributions are weighted averages of component distributions

- Mixture distribution
 - Component weights \(0 \leq \pi_j \leq 1\) s.t. \(\sum_{j=1}^{k} \pi_j = 1\)
 - Component distributions \(p_j(x)\)

- Simple form of mixture
 \[
p_{\text{mixture}}(x) = \sum_{j=1}^{k} \pi_j p_j(x)
 \]

- Exercise: Check that \(p_{\text{mixture}}\) integrates to 1.
Mixture models can be viewed as latent (or “hidden”) variable models

- Simple form of mixture

\[p_{\text{mixture}}(x) = \sum_{j=1}^{k} \pi_j p_j(x) \]

- Let \(z \in \{1, \ldots, k\} \) be an auxiliary indicator variable

- Let \(p(z = j) = \pi_j \), then the joint density model is:

\[p(x, z) = p(z)p(x|z) \]

- The distribution of \(x \) marginalizes over the latent variable \(z \) which is equivalent to the mixture above

\[p_{\text{mixture}}(x) \equiv \sum_{z} p(x, z) = \sum_{z} p(z)p(x|z) \]
Gaussian mixture models (GMM) are one of the most common mixture distributions.

- Form of Gaussian mixture model

\[
p_{\text{GMM}}(x) = \sum_{j=1}^{k} \pi_j p_N(x; \mu_j, \Sigma_j) = \sum_{j=1}^{k} p(z = j) p_N(x; z = j)
\]

Figure 11.3 A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each component in the mixture. (b) A surface plot of the overall density. Based on Figure 2.23 of (Bishop 2006a). Figure generated by mixGaussPlotDemo.
MLE for mixtures is difficult
Reason 1: The algebraic form is more complex

- The mixture log likelihood cannot be simplified

\[
\begin{align*}
\arg \max_{\pi, \mu_j, \Sigma_j} & \log \prod_i p_{\text{GMM}}(x_i; \pi, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k) \\
\sum_i & \log p_{\text{GMM}}(x_i; \pi, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k) \\
\sum_i & \log \sum_{z_i} \pi_{z_i} p_N(x_i \mid \mu_{z_i}, \Sigma_{z_i}) \\
\sum_i & \log \sum_{z_i} p(z_i) p_N(x_i \mid z_i)
\end{align*}
\]

- Cannot exchange log and summation to cancel exp
MLE for mixtures is difficult
Reason 2: Problem is non-convex (and could have multiple local optima)

- The intuition is similar to the problem with k-means clustering

See [ML, Ch. 11, pp. 347-348] for more detailed analysis.
The **Expectation-Maximization (EM)** can estimate models and is a generalization of k-means

- The EM algorithm for GMM alternates between
 - Probabilistic/soft assignment of points
 - Estimation of Gaussian for each component

- Similar to k-means which alternates between
 - Hard assignment of points
 - Estimation of mean of points in each cluster
EM Algorithm: Initialization

EM Algorithm: Iteration 1 and 3

EM Algorithm: Iteration 5 and 16

EM algorithm for Gaussian mixture models

Expectation step:

- Randomly initialize mixture components
- Expectation step (determine soft assignments)

\[r_{ij}^t = \frac{p(z_i = j | x_i, \theta^{t-1})}{p(z_i, x_i) \sum_{z_i} p(z_i | \theta^{t-1}) p(x_i | z_i, \theta^{t-1})} \]

\[= \frac{p(z_i = j | x_i, \theta^{t-1})}{\sum_{z_i} p(z_i | \theta^{t-1}) p(x_i | z_i, \theta^{t-1})} \]

\[= \frac{\pi_j p_N(x_i | \mu_j^{t-1}, \Sigma_j^{t-1})}{\sum_k \pi_k p_N(x_i | \mu_k^{t-1}, \Sigma_k^{t-1})} \]
EM algorithm for Gaussian mixture models
Maximization step

- Compute weighted mean and covariance using soft assignments from E step

\[\mu_j^t = \frac{\sum_i r_{ij} x_i}{\sum_i r_{ij}} \]
\[\Sigma_j^t = \frac{\sum_i r_{ij} (x_i - \mu_j^t)(x_i - \mu_j^t)^T}{\sum_i r_{ij}} \]
Observation: If z_i were observed (i.e., we knew the cluster labels), then optimizing the complete log likelihood is easy

- **Observed/marginal log likelihood (if z_i is unknown)**

 $$\ell(\theta) = \sum_i \log \sum_{z_i} p(x_i, z_i; \theta)$$

- **Complete log likelihood (if z_i is known)**

 $$\ell_c(\theta) = \sum_i \log p(x_i, z_i; \theta) = \sum_i \log p(z_i)p_N(x_i | z_i)$$

 - For GMMs, this is convex and easy to solve
Derivation of EM iteration for GMM

- Complete log-likelihood
 \[\ell_c(\theta) = \sum_i \log p(x_i, z_i | \theta) \]

- Expected complete log likelihood
 \[Q(\theta; \theta^{t-1}) = Q_{\theta^{t-1}}(\theta) = E_{z...|x...,\theta^{t-1}}[\ell_c(\theta)] \]
 - **NOTE:** \(Q \) is a function of \(\theta \) **given** the previous parameter value \(\theta^{t-1} \)

- Let’s write the joint density of \(x \) and \(z \) as:
 \[p(x_i, z_i | \theta) = \prod_j \left(\pi_j p(x_i | \theta_j) \right)^{I(z_i=j)} \]
 - \(I(z_i = j) \) is an indicator function that is 1 if the inside expression is true or 0 otherwise

- See 11.22-11.26 pp. 351 of [ML] for derivation
EM algorithm is **guaranteed** to increase *observed* likelihood, i.e., $\prod_i p_{\text{mixture}}(x_i)$
Step 1: Use Jensen’s inequality to get concave lower bound

- Jensen’s inequality if f is concave (e.g., log)
 \[f(\mathbb{E}[x]) \geq \mathbb{E}[f(x)] \]
- $\ell(\theta)$
 \[\ell(\theta) = \sum_i \log \sum_{z_i} p(x_i, z_i; \theta) \]
- $\ell(\theta) = \sum_i \log \sum_{z_i} q_i(z_i) \frac{p(x_i, z_i; \theta)}{q_i(z_i)}$
- $\ell(\theta) = \sum_i \log \mathbb{E}_{q_i} \left[\frac{p(x_i, z_i; \theta)}{q_i(z_i)} \right]$
- $\ell(\theta) \geq \sum_i \mathbb{E}_{q_i} \left[\log \frac{p(x_i, z_i; \theta)}{q_i(z_i)} \right]$
- $\equiv Q(\theta; q)$ for any distribution $q = (q_1, \ldots, q_n)$
Step 2: Choose \textbf{best} lower bound using the current parameters (for each point x_i)

- $L(\theta, q_i) = \sum_{z_i} q_i(z_i) \log \frac{p(x_i, z_i; \theta)}{q_i(z_i)}$
- $= \sum_{z_i} q_i(z_i) \log \frac{p(x_i; \theta)p(z_i | x_i; \theta)}{q_i(z_i)}$
- $= \sum_{z_i} q_i(z_i) \log \frac{p(z_i | x_i; \theta)}{q_i(z_i)} + \sum_{z_i} q_i(z_i) \log p(x_i; \theta)$
- $= \sum_{z_i} q_i(z_i) \log \frac{p(z_i | x_i; \theta)}{q_i(z_i)} + \log p(x_i; \theta)$
- $= - \sum_{z_i} q_i(z_i) \log \frac{q_i(z_i)}{p(z_i | x_i; \theta)} + \log p(x_i; \theta)$
- $= -KL(q_i(z_i), p(z_i | x_i; \theta)) + \log p(x_i; \theta)$
- Ideally, $q_i(z_i) = p(z_i | x_i, \theta)$ so KL is 0
Step 2: Lower bound is tight at current parameters θ^t if $q_i^t(z_i) = p(z_i|x_i, \theta^t)$

- The lower bound is **tight** with respect to the observed likelihood:

 $Q(\theta^t, \theta^t) = \sum_i L(\theta^t, q^t)$

 $= \sum_i -KL(q_i^t(z_i), p(z_i|x_i; \theta^t)) + \log p(x_i; \theta^t)$

 $= \sum_i -KL(p(z_i|x_i; \theta^t), p(z_i|x_i; \theta^t)) + \log p(x_i; \theta^t)$

 $= \sum_i \log p(x_i|\theta^t)$

 $= \ell(\theta^t)$

- Where last step is because KL is 0 if the same distribution
- In summary:

 $Q(\theta^t, \theta^t) = \ell(\theta^t)$
Step 3: Maximize the lower bound

- We setup the optimization problem to update the parameter based on the lower bound
 \[\theta^{t+1} = \arg \max_{\theta} Q(\theta, \theta^t) \]
- By simple definition of maximization, we have:
 \[Q(\theta^{t+1}, \theta^t) \geq Q(\theta^t, \theta^t) \]
Putting all the steps together, we can prove monotonic increase of the EM algorithm

- Lower bound, maximization, tightness
 \[\ell(\theta_{t+1}) \geq Q(\theta_{t+1}, \theta_t) \geq Q(\theta_t, \theta_t) = \ell(\theta_t) \]
Proof that it monotonically increases likelihood

- See 11.4.7 in [ML] for full derivation of proof
- Show that $Q(\theta; q^t)$ is lower bound observed likelihood $\ell(\theta)$, i.e., $\ell(\theta) \geq Q(\theta; q^t)$, $\forall \theta$
- Choose $q^t(z_i) = p(z_i|x_i, \theta^t)$, which corresponds to $Q(\theta; \theta^t)$
- Show that lower bound is tight at θ_t
- Combine three concepts
 1. Lower bound inequality
 2. Maximization inequality
 3. Tightness of lower bound