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Gaussian mixture models (GMM) can be used for
density estimation

1. General density estimation
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https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html
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Even if each component distribution is independent,
the mixture may not be independent

» Each component distribution is spherical (i.e., independent)
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Gaussian mixture models (GMM) can be used for
flexible clustering

2. Flexible clustering

https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html
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Mixture distributions are weighted averages of
component distributions

» Mixture distribution

» Component weights 0 < 7;, < 1s.t. Y% =1

j=1T
> Component distributions p;(x)

> Simple form of mixture .

Pmixture (x) = z TP, (x)

j=1
> Exercise: Check that ppixture integrates to 1.
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Mixture models can be viewed as
latent (or “hidden”) variable models

> Simple form of mixture k

Pmixture (X) = z Tipj (x)
j=1
> Let z € {1, ..., k} be an auxiliary indicator variable

> Let p(z = j) = m;, then the joint density model is:
p(x,z) = p(z)p(x|z)

> The distribution of x marginalizes over the latent variable z
which is equivalent to the mixture above

Picture () = ) p(6,2) = ) p(2p(xl2)
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Gaussian mixture models (GMM) are one of the
most common mixture distributions

» Form of Gaussian mixture model
k k

pemm(X) = Eﬂjpw(xi ui, %) = zP(Z = Don(x;z = j)

Jj=1 Jj=1

Machine
Learning,
Murphy, T R R T T
2012. (a) (b)

Figure 11.3 A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each
component in the mixture. (b) A surface plot of the overall density. Based on Figure 2.23 of (Bishop 2006a).
Figure generated by mixGaussPlotDemo.
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MLE for mixtures is difficult
Reason 1: The algebraic form is more complex

» The mixture log likelihood cannot be simplified

arg ma)z( lOg pGMM(xi; T, Uy, "'uuszlJ ""Zk)
TLHj&j i

z lOg pGMM(xi; T, Uy, vy Ui 21' L Zk)

[
z logz nZipN(xi | nuZi' ZZi
i Zi
z 1082 p(z)pn (xi|z;)
l Zi

> Cannot exchange log and summation to cancel exp

David I. Inouye 7



MLE for mixtures is difficult
Reason 2: Problem is non-convex
(and could have multiple local optima)

> The intuition is similar to the problem with k-
means clustering

Objective = 526.494
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See [ML, Ch. 11, pp. 347-348] for more detailed analysis.
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The Expectation-Maximization (EM) can estimate
models and is a generalization of k-means

> The EM algorithm for GMM alternates between
> Probabilistic/soft assignment of points
» Estimation of Gaussian for each component

» Similar to k-means which alternates between

» Hard assignment of points
» Estimation of mean of points in each cluster
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EM Algorithm: Initialization
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Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM Algorithm: Iteration 1 and 3

lteration 1 lteration 3

Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM Algorithm: Iteration 5 and 16

Iteration 5

Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM algorithm for Gaussian mixture models
Expectation step:

» Randomly initialize mixture components

» Expectation step (determine soft assignments)

'r.t.
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EM algorithm for Gaussian mixture models
Maximization step

» Compute weighted mean and covariance using
soft assignments from E step




Observation: If z; were observed (i.e., we knew the
cluster labels), then optimizing the complete log
likelihood is easy

» Observed/marginal log likelihood
(if z; is unknown)

£(6) = Z log ) p(xi,; 0)

> Complete log likelihood (if z; is known)
£:(0) = ) logp(x,z;0) = ) logp(z)pw (xi 12

» For GMMs, this is convex and easy to solve
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Derivation of EM iteration for GMM

» Complete log-likelihood

£:(6) = ) logp(x,16)

> Expected complete log Iikellihood
Q(8;0'™)) = Qge-1(8) = E, 1, ge-1[€,(6)]

» NOTE: Q is a function of 8 given the previous parameter value 6¢~1
> Let’s write the joint density of x and z as:

p(x;, 2;|0) = l_[ (njp(xi‘ej))I(Zi:j)

» I(z; = j) is an indicator function that is 1 if the inside expression is
true or O otherwise

> See 11.22-11.26 pp. 351 of [ML] for derivation

David I. Inouye




EM algorithm is guaranteed to increase
observed likelihood, i.e., [ 1; Pmixture (Xi)

et 9t+1 et+2
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Step 1: Use Jensen’s inequality to get concave
lower bound ()

> Jensen’s inequality if f is concave

(e.g., log)
=

> £(6)
» = ilog i, p(xi, z;; 6)

i i;e

= 2ilog iz, qi(z;) p(:i ;) :
- p(x;,2i;0)
"= 2;log ‘Eq" qi(z;) |
[ i, Zi;0)]
> > Zi IECIi lng(:l(zl) )

» = Q(0; q) for any distribution g =
(91, qn)
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Step 2: Choose best lower bound using the
current parameters (for each point x;)

(xi,2;;0)
> L(H) ql) — ZZi qi (Zi) logp ;Cl(zl)
p(xi;0)p(z;lx;;0)
qi(z;)
+ Xz, 9i(z) logp(x; ; 0)

+ logp(x;; 6)

> = Zzi qi(z;) log

p(zilx;i; 0)
qi(z;)
p(z; |xl 0)

> = Zzi qi(z;) log

> = Zz CIL(Z ) log

> = —KL(CIi(Zi);P(ZJxl ; 9)) +logp(x;; 6)
> Ideally, g;(z;) = p(z;|x;,0 ) soKLis O
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Step 2: Lower bound is tight at current
parameters 0% if 7 (z;) = p(z;|x;, 8Y)

> The lower bound is tight with respect to the observed
likelihood:

> Q(6%,69) = ¥, L(6% q%)

> = % —KL(qf (2), p(zi|x; 5 0%)) +logp(x; ; 6°)

> = X —KL((zilx;50%), p(zi]x;;01) +logp(xi ; 6

> = Y logp(x;|6%)

» = £(6Y)

» Where last step is because KL is O if the same distribution
> [n summary:

Q(6%,6%) = £(6°)




Step 3: Maximize the lower bound

> We setup the optimization problem to update
the parameter based on the lower bound

Ot = arg max 0(6,6Y)

> By simple definition of maximization, we have:
Q6"+, 6%) = (0%, 6°)




Putting all the steps together, we can prove
monotonic increase of the EM algorithm

» Lower bound, maximization, tightness
£(0°1) = Q(O*,0%) = Q(6%,6°) = £(6°)

et et+1 et+2




Proof that it monotonically increases likelihood

> See 11.4.7 in [ML] for full derivation of proof

> Show that Q(0; qt) is lower bound observed
likelihood £(8), i.e., £(8) = Q(6; q*), VO

> Choose g (z;) = p(z;|x;,8%), which
corresponds to Q(6; 8%)

> Show that lower bound is tight at 6,

> Combine three concepts
1. Lower bound inequality
2. Maximization inequality
3. Tightness of lower bound




